Ноль и фаза в электрике — назначение фазного и нулевого провода. Как определить фазу и ноль без приборов: определяем где фаза где ноль по проводам и с индикаторной отверткой Как найти фазу и ноль индикаторной

1 7 675

Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) - электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.

  • Земля будет жёлтой, зелёной либо жёлто-зелёной.
  • Ноль будет синим или голубым.
  • Фазе досталась самая богатая палитра, она бывает серой и красной, розовой и бирюзовой, оранжевой и фиолетовой, но чаще всего - коричневой, чёрной или белой.

Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже - от щитка до квартиры тянутся провода одного цвета, а внутри помещения - другого. Как разобраться в хитросплетении проводов?

Правильнее всего пригласить квалифицированного электрика, электричество - штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!

Ищем фазу

Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.

Важный момент! Отсоединив провода от розетки, обязательно разведите их в разные стороны.

После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза - тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник - это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.

В поиске земли

Мультиметр - это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим - сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.

Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же - выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль - нулём на шкале прибора.

Я электрик с большим стажем. Тридцать лет работаю с электричеством. Бывает, что меня спрашивают, как отличить фазу от нуля в отсутствии приборов. Вопрос не простой. Сейчас я попытаюсь рассказать все, что об этом знаю.

Фаза и ноль. В чем разница?

Строго говоря, фазный и нулевой проводники не имеют больших различий. В цепях переменного тока за одну секунду ток меняет направление пятьдесят раз. Как тут отличишь, какую функцию выполняет тот или иной провод? Единственное отличие между фазным и нулевым проводниками состоит в том, что «ноль» (нулевой проводник) соединен с Землей. Именно так. В землю закопан электрический контур и на подстанции один из выводов трансформатора соединен с этим контуром. Такая электрическая схема называется сетью с глухо заземленной нейтралью. В такой схеме нулевой провод имеет потенциал земли. Мы с вами тоже имеем потенциал земли. Поэтому, коснувшись заземленного проводника мы не получаем удар током.

Теперь, когда вы имеете представление о «нуле» перейдем к «фазе». Напряжение фазного проводника 50 раз в секунду меня меняет свою полярность относительно «нуля». В цепи фаза-ноль ток изменяет свое направление тоже 50 раз в секунду. Если ток потечет через тело человека, то это закончится очень плохо. Поэтому проявляйте крайнюю осторожность.

На самом деле нет ни одного прибора, который бы «чувствовал» «фазу». Все приборы фиксируют, течет ли ток от данного конкретного провода на «землю» или нет. Даже однополюсный пробник, которым часто пользуются для обнаружения фазных проводов, работает по этому принципу. Сейчас мы не станем вдаваться в подробности работы таких пробников.

Ищем «фазу»

Если нам необходимо отличить фазу от ноля, то мы должны создать электрическую цепь, при помощи которой мы будем однозначно знать, течет ли ток от выбранного нами провода на «землю» или нет. На ум приходит несколько приборов, которые смогут нам помочь:

  • лампочка,
  • еще одна лампочка, неоновая,
  • светодиод.

Есть еще один способ, очень ненадежный. В последнее время провода стали маркировать по расцветке изоляции. Нулевой провод имеет синий цвет, изоляция заземляющего провода имеет желто-зеленую расцветку. Но кто поручиться, что электрик выполнил подключение согласно правилам или он не был дальтоником?

«Дедовский» способ

Многие десятилетия электрики использовали электрическую лампочку в качестве измерительного прибора. Лампа накаливания, патрон и два провода. Этот прибор назывался «контролькой». Для определения «фазы» одним выводом контрольки касались провода, другим металлического предмета, который заведомо соединен с землей. Это мог быть корпус щитка освещения, или другого распределительного устройства. По правилам они все заземляются. К сожалению, найти заземленный предмет не всегда возможно. Встречал советы, когда в качестве земли предлагали использовать трубы отопления или водопровода. Не советую категорически! Можно ударить током ни чего не подозревающего человека. Поверьте на слово. Если вы в собственном доме, на даче роль «земли» может выполнить металлический штырь забитый в землю, другие металлические предметы, имеющие надежное соединение с землей.

Контрольку запрещено использовать потому, что ее можно присоединить к двум фазным проводам. В этом случае напряжение на ней будет 1.7 раза выше напряжения сети, лампочка может просто взорваться. Если вы уверены, что один из проводов контрольки присоединен к земле, то опасаться взрыва не стоит.

Существуют более безопасные приборы. Случайно под рукой может оказаться индикаторная лампа от старой связной аппаратуры. Эти лампочки, «инки», начинают светиться, если один из выводов присоединен к фазному проводу. Однополюсные пробники оснащены подобными лампами.

Более серьезным прибором будет комбинация светодиода и соединенного с ним последовательно токоограничительного резистора. Понятно, что этот случай для людей, дружащих с паяльником, например радиолюбителей. Резистор должен иметь сопротивление несколько десятков килоомм.

Во избежание поражения током нужно следовать одному простому правилу. Во время измерений не касаться проводов и металла ни одной частью тела.

Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы . Стали включать оба трансформатора на параллельную работу и получили. Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.

Что собой представляет чередование фаз?

Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.

Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.

Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения . Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или.

Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз:

Когда нужно учитывать порядок?

Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока . От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.


Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.

Если имеется электрический силовой кабель , с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь. На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о вы можете узнать из нашей статьи.


В нашем садоводческом товариществе установили трёхфазный электросчётчик с трансформатором тока. Счетчик был новый со всеми пломбами. Однако при полностью отключенной нагрузке диск счётчика медленно вращается, то есть у счётчика обнаружился «самоход». Понятно, платить товариществу за учитываемую счетчиком энергию, которую оно фактически не использовало, не хотелось.

Сначала решили, что счетчик неисправен. Заменяли счетчики несколько раз, но «самоход» оставался. В результате пришли к другому выводу - счетчик не виноват. Стали думать, что же вызывает подобный «самоход»? В заводской инструкции, приложенной к трёхфазному счетчику , записано: подключать счётчик к сети необходимо, соблюдая последовательность чередования фаз, чтобы фаза А сети была бы подключена к первому зажиму счётчика, фаза В - ко второму, а фаза С - к третьему зажиму счётчика.


.

Последовательность чередования фаз легко установить с помощью фазоуказателя. Таковой всегда имеется на электростанциях, в электрохозяйствах крупных заводов, но откуда ему быть в садоводческих товариществах? Наша попытка заполучить фазоуказатель на прокат на пару дней в крупном учреждении не удалась. Пришлось самим изготовить «Устройство для определения последовательности чередования фаз» , с помощью которого удалось определить эту правильную последовательность. В результате после устранения нарушения последовательности чередования фаз «самоход» счётчика исчез. Стало быть, отпала нужда платить за неиспользованную садоводами энергию.

Устройство для определения последовательности чередования фаз в трехфазной сети

Итак, вышеупомянутое «Устройство для определения последовательности чередования фаз» предназначено для определения фазы, в которой напряжение отстаёт от напряжения в фазе, произвольно взятой для начала отсчёта. Знание этого отставания необходимо для правильного подключения к сети приборов, в которых требуется соблюдать последовательность чередования фаз, например, трёхфазных четырёхпроводных (с нулем) электросчетчиков.

Конструкция устройства достаточно простая (рис. 1). На основании из электроизоляционного материала, например текстолита, размещены два настенных электропатрона с ввинченными в них обычными осветительными лампами накаливания, закрытыми прозрачными кожухами, изготовленными из пластиковой тары от соков, воды и т. д. На основании укреплены также конденсатор и клеммы для подключения проводов.

Одни выводы от ламп и конденсатора спаяны (точка О), другие концы проводов соединены с клеммами А, В и С (рис. 2).

Принцип действия «Устройства для определения последовательности чередования фаз» таков. При подключении «Устройства...» к трехфазной сети из-за наличия конденсатора в каждой фазе изменяется напряжение, что приводит к разному накалу ламп. (В нашем случае к конденсатору подсоединена фаза В.) По величине накала (яркости свечения ламп) и судят о принадлежности оставшихся фаз (проводов) к фазе А или к фазе С.

Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».

Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.

У него на объекте работала бригада электромонтажников.

Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.

Вот фото двух секций напряжением 400 (В).


При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло, при котором сработала защита сразу на двух вводных автоматических выключателях.


Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.

Фазоуказатель ФУ-2

Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.


Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.

P.S. В следующих статьях мы поговорим о правильности проведения фазировки. Подписывайтесь на новости сайта, чтобы не пропустить выпуски новых статей.

Нередко при обслуживании электрооборудований необходимо проводить проверку чередования фаз и производить фазировку. Таким чаще всего пользуются при согласовании работы трансформаторов. В нашей статье мы опишем чередование фаз в 3-х фазной сети, необходимые инструменты и способы правильной фазировки.

Вводная история

Представим себе монтаж двух масляных трансформаторов. Электрики провели успешные пусконаладочные работы трансформаторов, вводных выключателей, шин и секционных разделителей. Но, когда попытались запустить трансформаторы параллельно, произошло короткое замыкание . Электромонтеры говорили, что произвели проверку чередования фаз, и все было в порядке. Но фазировку видимо никто не учел, что привело к такой ошибке. Давайте детально рассмотрим суть проблемы данного случая.

Что такое чередование фаз

Трехфазная сеть имеет три фазы, обозначаемые А, В и С. Если вспомнить физику, то это означает, что синусоиды фаз на 120˚ смещены друг от друга. Всего существует шесть типов порядков чередования, которые в свою очередь можно разделить на две группы – прямые и обратные. Прямые чередования выглядят как АВС, ВСА и САВ, а обратные – СВА, ВАС и АСВ. Для проверки чередования фаз используют прибор – фазоуказатель.

Что необходимо для проверки фаз

Фазоуказатель (см. рисунок ниже) состоит из трех обмоток и диска, который при проверке будет вращаться. Чтобы удобно было распознавать результат, на диске нанесены черно-белые метки. ФУ работает так же, как и асинхронный двигатель.

Если мы подключим три провода на выводы, то увидим, что диск начнет вращаться. Если он крутится по часовой стрелке, это означает прямое чередование фаз (АВС, ВСА или САВ).Если диск крутится против часовой стрелки, то это означает обратное чередование(СВА, ВАС или АСВ).

Вернемся к нашей истории с электромонтажниками, они проверили чередование фаз, которое в одном и другом случае совпало. Фазировку было выполнить необходимо, а тут не обойтись без фазоуказателя (ФУ). Электромонтажники соединили разноименные фазы при запуске, а для того, чтобы узнать где именно А, В и С надо было использовать мультиметр или осциллограф.

Прибор мультиметр измеряет напряжение между фазами разных источников питания, достижение отметки ноль означает, что фазы одноименные. В противоположном случае, линейное напряжение будет означать, что фазы разноименные. Такой способ самый быстрый и простой, но можно также использовать осциллограф, который будет показывать какая фаза отстает от другой на 120˚.

В каких случаях учитывают порядок

Проверка чередования фаз необходима при использовании трехфазных электродвигателей переменного тока. От порядка фаз зависит направление вращения двигателя, это очень важное условие, особенно когда несколько механизмов используют двигатели.

Еще один случай, когда необходимо обратить внимание на чередование фаз, это при работе с электросчетчиком индукционного типа СА4. При обратном порядке иногда случается самопроизвольное вращение диска на счетчике. Современные счетчики не настолько чувствительны к чередованию фаз, но у них на индикаторе тоже появится соответствующие данные.

Иногда контроль фазировки можно выполнить и без специальных приборов. Это если подключение трехфазной сети питания выполняется с помощью который можно в компании Югтелекабель. Если жилы внутри кабеля отличаются по цветам, то прозвонка осуществляется гораздо быстрее. Иногда просто нужно снять наружную изоляцию кабеля, чтобы понять, где какая фаза находится (А, В или С). Если на обоих концах жилы одинакового цвета, то они одинаковые.

Не всегда стоит полагаться на цветовую маркировку, не все производители придерживаются таких тенденций, иногда на разных концах кабеля можно встретить разные цвета. Поэтому лучше воспользоваться прозвонкой жил.

8.1.Основные понятия и определения

Электрическое оборудование трехфазного тока (синхронные компенсаторы, трансформаторы, линии электро-передачи) подлежит обязательной фазировке перед первым включением в сеть, а также после ремонта, при котором мог быть нарушен.порядок следования и чередования фаз.

В общем случае фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз вклю-чаемой электроустановки с соответствующими фазами напряжения сети.

Фазировка включает в себя три существенно различные операции. Первая из них состоит в проверке и срав-нении порядка следования фаз включаемой электроустановки и сети. Вторая операция состоит в проверке совпадения по фазе одноименных напряжений, т. е. отсутствии между ними углового сдвига. Наконец, третья операция заключается в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, т. е. в конечном счете правильности подвода токопроводящих частей к включающему аппарату.

Фаза. Под трехфазной системой напряжений понимают совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты (амплитуда синусоиды одного напряжения относительно предшествующей ей амплитуды синусоиды другого напряжения) на один и тот же фазный угол (рис. 8.1, а).

Таким образом, угол, характери-зующий определенную стадию перио-дически изменяющегося параметра (в данном случае напряжения) , называют фазным углом или просто фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся напряже-ний одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяется меж-ду одинаковыми фазами. Фазы обозна-чают прописными буквами А, В, С. Трехфазные системы изображают также вращающимися векторами (рис.8.1, б).

На практике под фазой, трехфазной системы понимают также отдельный участок трехфазной цепи, по ко-торому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой назы-вают обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи. Для распознавания фаз оборудования на кожухах аппаратов, шинах, опорах и конструкциях.наносят цветные метки в виде кружков, полос и т. д. Элементы оборудования, принадлежащие фазе А, окрашивают в желтый цвет, фазы В-в зеленый и фазы С-в красный. В соответствии с этим фазы часто называют желтой, зеленой и красной: ж, з, к.

Таким образом, в зависимости от рассматриваемого вопроса фаза - это либо угол, характеризующий состоя­ние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.

Порядок следования фаз. Трехфазные системы напряжений и тока могут отличаться друг от друга порядком следования фаз. Если фазы (например, сети) следуют друг за другом в порядке А, В, С - это так называемый прямой порядок следования фаз (см. § 7.3). Если фазы следуют друг за другом в порядке А, С, В - это обратный порядок следования фаз.

Порядок следования фаз проверяют индукционным фазоуказателем типа И-517 или аналогичным по устройству фазоуказателем типа ФУ-2. Фазоуказатель подключают к проверяемой системе напряжений. Зажимы прибора маркированы, т. е. обозначены буквами А, В, С. Если фазы сети совпадут с маркировкой прибора, диск фазоуказателя будет вращаться в направлении, указанном стрелкой на кожухе прибора. Такое вращение диска соответствует прямому порядку следования фаз сети. Вращение диска в обратном направлении указывает на обратный порядок следования фаз. Получение прямого порядка следования фаз из обратного производится переменой мест двух любых фаз электроустановки.

Иногда вместо термина "порядок следования фаз" говорят "порядок чередования фаз". Во избежание пута­ницы условимся применять термин "чередование фаз" только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз. Итак, под чередованием фаз следует понимать очередность, в которой фазы трехфазной цепи (обмотки и выводы электрических машин, провода линий и т. д.) расположены в пространстве, если обход их кажцый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветке проводов и сборных шин.

Совпадение фаз. При фазировке трехфазных цепей встречаются различные варианты чередования обозначений вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз (рис. 8.2, а, б). Варианты, при которых не совпадает порядок следования фаз, или порядок чередования фаз электроустановки и сети, при включении выключателя приводят к КЗ.


В то же время возможен единственный вариант, когда совпадает то и другое. Короткое замыкание между соединяемыми частями (электроустановкой и сетью) здесь исключено.

Под совпадением фаз при фазировке как раз и понимают именно этот вариант, когда на вводы выключателя, попарно принадлежащие одной фазе, поданы одноименные напряжения, а обозначения (расцветка) вводов вы-ключателя согласованы с обозначением фаз напряжений (рис. 8.2, в).

При подключении различных электрических устройств (розетка или выключатель), не обязательно учитывать полярность проводников. Но что делать, если используемая проводка в доме трехжильная и не имеет цветовой маркировки, а устройства необходимо подключить с заземляющим проводником. Для этого существует несколько способов как проверить, какой из проводов является фазой, нулем или заземлением.

Определение фазы и нуля без приборов

Бывают ситуации, когда для правильности подключения необходимо узнать какой провод фаза, а какой ноль. Например, для обеспечения нормальной работы осветительного прибора, в разрыв (через выключатель) и дет фазный провод, а нулевой прокладывается непосредственно к осветительному прибору. В настоящее время, проводка в домах и квартирах прокладывается трехжильными проводами, которые подразделяют на три вида.

Виды проводников:

  • Фаза;
  • Ноль;
  • Заземление.

Отличить в проводке фазу от нуля представляется возможным визуально. Но для этого должно быть соблюдено одно важное условие. Проводка в доме или квартире должна быть выполнена с применением разноцветных проводников.

Фазный проводник согласно правилам ГОСТ, обязательно должен маркироваться следующими цветами: черный, белый, коричневый, фиолетовый, бирюзовый, красный, серый, розовый и оранжевый.

Обратите внимание! Самыми распространенными расцветками, встречающимися для маркировки фазных проводов, являются белый, коричневый и розовый.


Нулевой проводник легко найти, так как он всегда маркируется голубым цветом. Провод заземления имеет желто – зеленую расцветку.

Стоит отметить, что электрический ток, который подается к жилым секторам, является переменным, поэтому полярность подключения электроприборов не имеет значения. Правильность подключения важно только для оборудования, работающего на постоянном токе.

Фаза и ноль в розетке: как определить индикаторной отверткой

Самым простым способом определения фазного проводника является применение обычной индикаторной отвертки. В настоящее время, на рынке представлено огромное количество данных приборов.

Типы индикаторов:

  • С неоновым индикатором;
  • С применением светодиодов.

Индикатор с использованием неоновой лампочки, выполнен в виде диэлектрического корпуса, внутри которого расположены неоновая лампа с подключенным к ней резистором.

Конструкция светодиодных индикаторов представлена в виде обычной отвертки, внутри которой расположены светодиод, микросхема и несколько небольших батареек. Данные устройства, имея различные характеристики, похожи по принципу действия.

Важно знать! Определить фазный проводник представляется возможным только при наличии напряжения в электрической сети.

Для того чтобы найти фазу в проводке, необходимо проделать следующее. С проводника снимается напряжение. Делается это путем отключения защитного автомата в электрощитке .

После этого, провода зачищаются от изоляции на длину примерно 1 – 2 см. Концы провода разводятся в стороны, это поможет избежать короткого замыкания между данными проводниками.

На провод, включением защитного автомата подается напряжение. Затем, металлическая часть индикатора прикладывается поочередно к каждому и проводов. Загоревшийся индикатор, укажет на рабочую фазу в проводке.

Стоит отметить, что некоторые устройства ввиду своих конструктивных особенностей, могут быть оснащены металлической пластиной в верхней части. Для правильного определения фазного проводника, касаться ее не нужно.

Как правильно найти фазу, ноль и заземление мультиметром

Если фазный проводник легко обнаружить, используя индикаторную отвертку, то ноль и заземление определить с ее помощь не представляется возможным. Так как данные проводники никак не влияют на работу индикатора. В данном случае, имеет смысл воспользоваться мультиметром.


Для определения потребуется:

  • Мультиметр (тестер);
  • Наличие напряжения 220 В.

Определение каждого из проводников, следует начинать с подготовки устройства. В штекеры под наименованием COM и V, подключаются щупы.

Если необходимо найти фазный провод, то для этого путем поворота переключателя, на мультиметре необходимо выбрать значение измерения переменного тока в диапазоне свыше 220 Вольт. После этого, щуп который подключен в гнездо с наименованием V, поочередно прикасаемся ко всем проводникам. При прикосновении фазному проводнику, на дисплее устройства появятся значения от 8 до 15 Вольт. Нулевой и заземляющий проводник данные показания не изменят.

Обратите внимание! При работе с проводкой под напряжением, обязательно соблюдайте правила безопасности.

После того, как найден фазный проводник, можно заняться поиском нулевого. Для этого, любым щупом мультиметра прикасаемся к фазному проводнику, другим замыкаем контакт с любым из других проводников. На нулевой проводник укажет появившееся на дисплее устройства значение в 220 Вольт.

Третьим проводником будет заземляющий. Показания на дисплее при прикосновении к фазному и заземляющему проводу всегда ниже значения в 220Вольт.

Нестандартные способы: как определить фазу в проводке

Следует учитывать то факт, что данные способы являются небезопасными. Применять их рекомендуется только при соблюдении всех необходимых мер безопасности.

Способы определения:

  • Самодельная контрольная лампочка;
  • Картофелина.

Для изготовления контрольной лампочки потребуется обычный патрон, лампа накаливания любой модности и метровый провод. В первую очередь зачищаем провод от изоляции примерно на длину 1 см. Далее, разбираем патрон и подключаем к его клеммам концы провода.


Затем, чтобы не повредить лампочку необходимо зачистить оставшиеся концы провода на длину 3 см. Вкручиваем лампочку в подготовленное устройство. После этого, отключив напряжение, зачищаем концы проводника, на котором необходимо найти фазный провод.

Скручивать контакты контрольной лампочки с проводом не нужно, так как потребуется свободный доступ к контактам проводника.

Далее, используя любой металлический предмет, зачищаем небольшой участок на металлической поверхности водопроводной трубы. Подаем напряжение на проводник и одним контактом контрольки касаемся зачищенного участка на трубе, а вторым одного из контактов провода. При прикосновении к фазному проводнику, лампочка загорится.

При помощи картофелины, проверить какой из проводов фазный, представляется следующим образом. Для устройства потребуется два провода метровой длины и резистор величиной в 1 мОм. Один из проводов необходимо вмонтировать в картофелину, и прикрепить к трубе. Другой провод одним из концов монтируется в картофелину, а другим производится поиск фазного провода. На фазный провод укажет появление потемнения на картофелине.

Разбираемся, как определить фазу и ноль (видео)

Как показывает практика, в большинстве случаев поиск фазных и нулевых проводников в электрической сети переменного тока не обязателен, так как полярность при подключении различных бытовых устройств не имеет значения.

При монтаже розеток, выключателей, бытовых потребителей приходится сталкиваться с определением фазы и нуля в электропроводке. Если для электромонтажников с опытом эта задача не является проблемой, то у тех, кто впервые коснулся этого вопроса, возникает много непонятных моментов. Поэтому следует разобраться, как и чем можно выявить фазу и ноль в розетке, каково назначение жил электропроводки и можно ли обойтись без специального оснащения.

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой – преобразование высокого напряжения в 380 В. К дому электроэнергия при помощи подземных кабелей подводится на вводной щит и имеет напряжение 380/220 В. Затем энергия подается к щиткам каждого подъезда, а в квартиру заходит всего одна фаза, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Таким образом, проводник, обеспечивающий подачу тока к потребителю, является фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение – защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

Как определить фазу и ноль индикаторной отверткой

Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, – использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.

Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:

  1. Отвертку зажимают между двумя пальцами – средним и большим, избегая касания оголенной части жала инструмента.
  2. Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
  3. Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
  4. При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.

Как определить фазу и ноль мультиметром

Прибор, которым измеряют напряжение, ток и сопротивление, называется мультиметром. Чтобы выявить фазный и нулевой провод с его помощью, сперва нужно настроить устройство, для чего выбирают необходимый предел измерений. В случае с цифровыми приборами устанавливают 600, 750 или 1000 «~V» или «ACV».

Определение фазы производится следующим образом: один из щупов прибора подключают к контакту розетки или кабеля, а до второго щупа дотрагиваются рукой. При отображении на дисплее значения около 200 В это будет указывать на наличие фазы. Показания могут отличаться, что зависит от отделки пола, обуви и т.п. Если прибор отображает нули либо напряжение в пределах 5-20 В, значит, контакт соответствует нолю.

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой – ноль;
  • коричневый – фаза;
  • заземление – зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим – проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.