Измерение сопротивления заземления -способы и нормы сопротивления

Что такое заземление

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

Сопротивление растекания

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Отличия между традиционным и штыревым заземлением

Традиционный контур заземления, который обычно монтируют самостоятельно, представляет из себя весьма громоздкую и трудоемкую подземную конструкцию.

Забивается несколько вертикальных электродов (уголок, труба, прут), между ними прокапывается траншея, и все они соединяются между собой горизонтальными связями (шиной или прутком).

Расстояние между вертикальными электродами должно быть не меньше их длины. Чем же плох такой способ?

Во-первых, мало кому охота перекапывать свой участок метровыми траншеями, а если территория оказалась уже облагорожена, то вообще возникает тупиковая ситуация. Кроме того, все эти ржавые металлические уголки, трубы и шины, находясь в земле, через несколько лет эксплуатации (буквально за 5-7 лет) начинают усиленно разрушаться.

Поэтому на сегодняшний день большую популярность получила другая система заземления, а именно — модульно штыревая или глубинная. Наиболее известные фирмы производители в наших краях Galmar и ZandZ.

Как известно, сопротивление заземляющего устройства зависит от:

типа грунта

времени года

глубины залегания электродов

Таким образом, если один электрод путем постепенного наращивания, забить на максимально возможную глубину, то можно получить идеальные показатели сопротивления. На этом принципе и работает глубинное заземление.

намного долговечнее

на порядок проще в монтаже

и при этом стоит уже не так дорого (можно найти комплекты порядка 5000 рублей)

Плюс ко всему этому, весь монтаж обходится без сварочных работ.

Именно необходимость сварки многих останавливает от самостоятельного выполнения данной работы. Либо нет аппарата, либо нет необходимых навыков.

Вот и приходится нанимать сторонних электриков.

Все заземление занимает место на территории вашего дома, буквально несколько квадратных сантиметров.

А еще его без проблем можно сделать прямо в подвале здания.

В среднем выходит, что в частном доме без котла для достижения требуемых 30 Ом, придется забить электрод общей длиной на 6-9 метров. Для дома с газовым отоплением (R=10 Ом) – на 9-15 метров.

Это усредненные показатели. Более точные данные всегда индивидуальны и напрямую зависят от региона, где вы проживаете, качества и состава грунта.

Если ваш дом построен на песке, однозначно покупайте 15-ти метровый комплект. Даже без наличия газового котла.

Расстояние трассы заземлителя от стены также регламентируется. В отличие от вводного кабеля оно должно быть не менее 1 метра.

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Принцип работы заземляющих систем

Защитное заземление подразумевает подключение корпуса электроустановки к металлической конструкции, врытой в грунт.

Если тот окажется под напряжением и его коснется пользователь, ток потечет по пути наименьшего сопротивления, т.е. в почву. Это обезопасит человека от получения электротравмы.

Для чего необходимы измерения?

Блестящее решение перечисленных ниже задач достигается идеальным нулевым сопротивлением в заземляющей цепи:

  1. Не допустить появления напряжения на корпусе технологических машин.
  2. Добиться эффективного опорного потенциала электроаппаратуры.
  3. Полностью устранить статические токи.

Правда электротехнический опыт показывает: результат под идеальный нуль получить невозможно.
Измерение сопротивления заземления
Процедура исполнения необходимых замеров с помощью прибора для определения сопротивления заземляющей шины. Такие процедуры проводятся по графику, который утверждается руководством обслуживающей организации

В любом случае, заземлённый электрод выдаёт какое-никакое сопротивление.

Конкретную величину resistance определяют:

  • сопротивление электрода в точке контакта с проводящей шиной;
  • контактная область между земляным электродом и грунтом;
  • структура грунта, дающая разное сопротивление.

Практика измерений сопротивления контура заземления отмечает, что первыми двумя факторами вполне можно пренебречь, но при соблюдении логичных условий:

  1. Заземляющий электрод сделан из металла с высокой электропроводимостью.
  2. Тело штыря электрода тщательно зачищено и плотно посажено в грунт.

Остаётся фактор третий – резистивная поверхность грунта. Он видится главной расчётной деталью для измерений сопротивления контура заземления.

Вычисляется же благодаря формуле:

R = pL / A,

где: p – удельное сопротивление грунта, L – условное заглубление, А – рабочая площадь.

Чтобы обезопасить владельцев дома/квартиры, заземлением должны быть снабжены все виды мощного домашнего электрооборудования:

Галерея изображенийФото из Все виды бытового энергозависимого оборудования, эксплуатируемого в квартирах и домах, необходимо подключать к автономным или общественным системам заземленияДля подключения электроприборов к заземляющей системе необходимо устанавливать розетки с заземляющими контактами, снабженными либо выходящими за пределы корпуса медными скобами, либо третьим отверстием, предназначенным для погружения контакта штепселя с тремя штырямиОбязательному заземлению подлежат все виды холодильного оборудования (холодильники, морозильные шкафы, МВП, электроплиты, стиральные машиныПодключение к заземляющему контуру обязано производится согласно схеме, приложенной производителем технической продукции, с использованием рекомендованных им средствОбязательно необходимо выполнить заземление гидромассажной ванны, т.к. в ее работе используются электроприборыВ беспрекословном заземлении нуждаются все виды сетевых машин, начиная от домашнего стационарного компьютера до серверных шкафов, в том числе электрошкафы для автоматов и УЗОНеобходимо заземлять все модели энергозависимых газовых котлов: как напольные, так и настенныеВсе линии заземления прокладывают по параллельной схеме, последовательное подключение к заземляющей системе недопустимоВарианты заземляющих контактовШтепсельная розетка с заземляющим контактомЗаземление кухонной бытовой техникиПодключение стиралки к заземляющему контуруУстройство заземления гидромассажной ванныСпособ заземления сетевого оборудованияЗаземление напольного газового котлаПодключение линий заземления к шине

При тестировании сопротивления каждую из заземляющих линий проверяют отдельно. Сопротивление между заземляющим элементом и каждой не проводящей ток частью электрооборудования, попадание под напряжение которой возможно, должно быть меньше 0,1 Ом.

В каких случаях проверяют контур заземления

При определении технического состояния рабочих комплектов в соответствии с нормами ревизии электрооборудования выполняем измерения:

  • сопротивления растекания тока контура;
  • напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между рабочих устройством и элементами, а также соединений естественных заземлителей с устройством;
  • токов короткого замыкания электроустановки;
  • состояния пробивных предохранителей;
  • удельного сопротивления грунта в районе заземляющего устройства.

Изменение параметров заземлителей с течением времени

Потребность в том, чтобы периодически проверять сопротивление заземления, вызвана изменениями его реального значения с течением времени и в зависимости от климатических условий.

Последнее обстоятельство связано с их зависимостью от множества факторов, основными из которых являются:

  • Ухудшение контакта в зонах сопряжения металлических элементов из-за повышенной влажности.
  • Изменение состояния грунта в месте его обустройства в засушливые и знойные дни.
  • Старение (износ) металлоконструкций и подводящих проводников, которые согласно ГОСТ должны иметь определенную толщину.

Проверять сопротивления заземления можно любым допустимым нормативами способом с привлечением подходящих для этих целей измерительных приборов. Рассмотрим самые известные из этих методик более подробно.

Виды заземляющих систем

Основой всех действующих систем заземления, применяемых в электроустановках напряжением до 1000 вольт, является система TN с глухозаземленной нейтралью источника питания. Она соединяется с открытыми проводящими частями электроустановок с помощью нулевых защитных проводников.

Более современной и безопасной схемой заземления считается система TN-S с разделением нулевых рабочего и защитного проводников на всем их протяжении. Она используется в новых зданиях и успешно защищает людей и оборудование. Система TN-S более дорогостоящая, поскольку для прокладки в трехфазной сети требуются пятижильные провода, а в однофазной сети – проводники с тремя жилами.

В системе TN-C-S защитный и рабочий нулевые проводники на каком-то определенном участке совмещаются в одном проводе. Она легко монтируется и широко применяется на различных объектах. Однако, если проводник PEN оборвется до точки разделения, то на подключенных электроприборах может появиться линейное напряжение.

Особенности проведения процедуры

Измерить сопротивление заземлителя в частном доме можно своими руками, используя мультиметр.

Но у этого способа есть 2 недостатка:

  • низкая точность;
  • отсутствие у результатов измерений законной силы.

Для полноценного исследования нужен специальный омметр или токоизмерительные клещи. Процедуру осуществляет лицензированная организация.

По ее окончании оформляется протокол измерений. Владелец дома предоставляет документ в местную энергетическую службу.

Нормы проверок контура заземления при профилактическом контроле

Визуальный осмотр заземляющей конструкции в грунте
Визуальный осмотр заземляющей конструкции в грунте

  • визуальные осмотры видимой части комплекта должны производиться не реже 1 раза в 6 месяцев;
  • контроль заземления опор воздушных линий электропередачи напряжением до 1000 В — не реже 1 раза в 6 лет;
  • измерения устройств опор воздушных линий электропередачи напряжением свыше 1000 В — не реже 1 раза в 12 лет;
  • ревизия защитного рабочего заземления с выборочным вскрытием грунта земли -1 раз в 12 лет.

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Измерение сопротивления8

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжением Для источников с трёхфазным напряжением Величина сопротивления заземления
127 В 220 В 8 Ом
220 В 380 В 4 Ом
380 В 660 В 2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

Типичная ошибка устройства заземления


На данном видео устройство заземления выполнено, скажем, на троечку с плюсом. В качестве электродов или забиваемого в грунт металла не используют арматуру или рифлёный металл, так как он по своим свойствам не способен находится долго в агрессивной среде – это ведёт к его неизбежно быстрой коррозии, соответственно, такое заземление достаточно быстро выйдет из строя. При использовании прута, оправдвнна только гладкая поверхность. А способ забивания металла в грунт при помощи перфоратора, прямо скажем – порадовал, за это респект автору.

Как выглядит контур заземления


В этом видеосюжете очень наглядно показано то, как нужно устраивать заземляющий контур. К данному материалу нет никаких замечаний. Спасибо автору за тольковое объяснение.

Как часто производить измерения

Измерения на предприятиях лучше всего проводить с определенной периодичностью осмотра, не реже, чем раз в 12 лет. В домашних условиях периодичность проверки контура заземления равняется одному разу в полтора года. Необходимо визуально осматривать элементы цепи, измерять сопротивление защитного заземления, при надобности раскапывать грунт.

Точный анализ можно получить в сухую теплую погоду, поскольку сухая почва и аппаратура покажут наиболее корректные цифры. Искажение результатов измерений сложно избежать в мокрую погоду.

В случае получения данных специалистами клиент в день приемки работ получит официальный протокол измерения сопротивления заземления, образец протокола проверки сопротивления представлен ниже. В бланке будут содержаться следующие данные: место выполненных работ, поправочный коэффициент в зависимости от сезона, назначение заземляющего контура и расстояние между электродами.

Плановые проверки

Сроки проведения плановых мероприятий оговариваются инструкцией РД-34.22.121-87, а также требованиями ПУЭ. Из этих документов можно узнать, какова периодичность визуального осмотра видимых частей устройств заземления, которая согласно им организуется не реже одного раза в полгода. Помимо этого из этих же нормативов следует, что не реже чем раз в 12 лет должны проводиться обследования конструкции со вскрытием грунта вокруг нее. Измерение сопротивления контуров заземления согласно тем же документам должно проводиться не реже раза в 6 лет.

Ответственными за проведение таких проверок являются лица, уполномоченные на это соответствующими органами. Владелец частного дома должен заранее оформить заявку на их проведение с последующей оплатой. По завершении испытаний он обязан предоставить в местную энергетическую службу протокол измерений сопротивлений контактов между элементами ЗК.

Внеочередные

Проводятся при наступлении чрезвычайных ситуаций, либо при наличии подозрений на снижение работоспособности сети. Необходимо выполнять после проведения земельных работ, строительства, любого вмешательства в силовую кабельную линию.

Капитальный ремонт сопровождается повторным вводом объекта в эксплуатацию с проведением соответствующих испытаний электроустановочных изделий.

Пусковые или вводные

Пусковые или вводные проверки заземления и измерения сопротивления организуются сразу же по окончании монтажа защитного контура (то есть накануне сдачи его представителю местной энергетической службы). Для этого потребуется пригласить специалиста от электрической лаборатории или другой организации, имеющей лицензию на право проведения таких испытаний.

По итогам проверки оформляется акт приемки, являющийся основанием для последующего пуска устройства в эксплуатацию и подтверждением того, что все питающие линии в частных домах заземлены.

Условия проведения испытаний

При организации мероприятий по проверке заземления важно обратить внимание на те условия, в которых предполагается их проведение. Они должны учитываться еще на стадии подготовки испытаний, а по их окончании вноситься в особый журнал. Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты. Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения.

При проведении контрольных замеров допустимых сопротивлений в осеннюю сырую погоду, например, полученные результаты будут в значительной степени искажены. Это объясняется тем, что пропитанный влагой грунт существенно увеличивает показатель проводимости почвы. Для того чтобы избежать всех этих сложностей и получить значение близкое к реальной величине – проще всего воспользоваться услугами профессионалов. Для этого необходимо обратиться в специальную электротехническую лабораторию, имеющую лицензию на проведение соответствующих работ.

Специалисты по прибытию на место выявят все факторы и организуют испытания защитного оборудования в соответствие с требованиями действующих нормативов. По завершении всего испытательного цикла ими же будет оформлен протокол измерения сопротивления заземления образец которого представлен ниже.
Протокол проверки сопротивлений заземлителей
Протокол проверки сопротивлений заземлителей

Методы измерения параметров заземляющих устройств

Известно несколько способов, воспользовавшись которыми удается проверить наличие и померить сопротивление заземлителя с достаточно высокой точностью. Рассмотрим каждый из этих подходов более подробно.

Проверка мультиметром

В первом варианте проверка заземления осуществляется с использованием мультиметра. Это необходимо, даже если все цвета совпадают по нормативам. Мультиметр должен быть включен в режим проверки напряжения. Вначале оба щупа устанавливаются на фазу и ноль и замеряется напряжение. Далее нулевой щуп переставляется на заземляющий проводник РЕ.

Если при измерении заземления мультиметром он покажет величину равную или немного меньшую предыдущего значения, следовательно заземление находится в рабочем состоянии. Если на экране высвечивается ноль или нет никаких цифр, значит в системе есть обрыв и она не работает.

Типовая схема включения прибора

Проверка заземления 4

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Трёхпроводный метод

Обозначим клеммы для измерения напряжения как П1 и П2, а клеммы для измерения тока — как T1 и T2. В реально существующих измерительных приборах эти клеммы могут иметь иные обозначения.

Схема измерения трёхпроводным методом

Схема измерения трёхпроводным методом

При трёхпроводном методе клеммы П1 и T1 соединяются перемычкой и подключаются одним проводом к исследуемому заземлению. Клемма П2 соединяется проводом с потенциальным штырем, а клемма П1 — с токовым штырем.

Преимуществом трёхпроводного метода является меньшее количество проводов. Недостатком — сильное влияние сопротивления провода, идущего к заземлению, на результаты измерения. Поэтому, обычно, трёхпроводный метод применяется для измерения сопротивления заземления, значение которого заведомо выше 5 Ом.

Четырёхпроводный метод

Когда к точности измерений предъявляются более высокие требования, используется четырёхпроводный метод. При нем к исследуемому заземлению идут раздельные провода от клемм П1 и T1, которые соединяются только непосредственно на клеммах заземления.

Схема измерений четырёхпроводным методом

Схема измерений четырёхпроводным методом

Через провод, который идет к T1, течет ток. Образующаяся при этом разность напряжений на концах провода вносит погрешность в измерения, характерные для трёхпроводного метода. Но при четырёхпроводном методе точка измерения напряжения (на клеммах заземления) соединена с измерительным прибором отдельным проводом. По этому проводу течет пренебрежимо малый ток (не более единиц миллиампер), так что его сопротивление практически не вносит погрешности в измерения.

Метод амперметра-вольтметра

При применении этого метода проверки сопротивления заземления потребуется собрать цепочку, одной из составляющих которой станет проверяемое заземляющее устройство. В нее дополнительно включается специальный токовый электрод, называемый «вспомогательным».

Помимо этого в указанной схеме предусматривается еще один – потенциальный электрод (зонд), предназначенный для снятия показаний падения напряжения. Его необходимо установить примерно на равном удалении, как от токового электрода, так и от заземленной точки. Вследствие такого расположения он находится в зоне с практически нулевым потенциалом (фото ниже).
Метод амперметра-вольтметра
Метод амперметра-вольтметра для измерения сопротивления заземления

Согласно данной схеме замеры сопротивлений заземлений сводятся к снятию показаний напряжения и тока и к последующему вычислению искомой величины по закону Ома R=U/I . Подобный способ испытаний оптимально подходит для загородных и частных домов. Для получения требуемого тока в измерительной цепи можно воспользоваться любым подходящим по мощности трансформаторным устройством. Как вариант, подойдут некоторые модели сварочных агрегатов.

Замер сопротивления трехпроводным методом

Является одним из наиболее часто применяемых способов инспекции проводки. Для выполнения работ, специалист собирает схему, в которой присутствуют следующие элементы:

  • Как и в предыдущем методе, в цепи присутствуют токовый и потенциальный электроды, которые выполнены из металлических стержней.
  • Оба стержня забиваются в грунт не ближе, чем в 15 – 20 метрах от точки проведения замера.
  • Потенциальный электрод забивается между токовым и точкой, для которой проводится измерение.
  • Далее, применяется стандартный метод амперметра-вольтметра при работающей силовой сети на объекте.

После применения уже упомянутой выше формулы, вычисляется относительно точный показатель сопротивления заземления.

Замер сопротивления четырехпроводным методом

В отличие от предыдущего, данный метод отличается повышенной точностью и используется при проведении профессиональной инспекции проводки надзорными органами. Суть данного способа состоит в выполнении следующих шагов:

  • Аналогично описанному трёхпроводному методу, собирается схема, состоящая из потенциального и токового электродов.
  • Потенциальный штырь погружается в грунт на расстоянии не менее 20 метров от заземляющей жилы.
  • Токовый электрод забивается в створе с потенциальным, но с отступом от него 20 метров и более.
  • Амперметром замеряется сила тока между потенциальным электродом и заземляющей жилой.
  • Аналогичным образом определяется численный параметр напряжения между точкой заземления и токовым электродом с применением вольтметра.

Полученные показатели U и I подставляются в формулу для определения R, и сопротивление заземления находится математическим путём.

Упрощённый двухточечный метод

Применение этого способа измерений требует наличия ещё одного качественного заземления помимо того, которое будет подвергаться исследованию. Методика актуальна для территорий густонаселённых, где часто нет возможности широко оперировать вспомогательными рабочими электродами.
Двухточечная схема измерений
Упрощённая методика измерений производится по двухточечной схеме. При такой технологии требуется меньше манипуляций с оборудованием и расчётами, но точность расчетов невысока

Метод двухточечного измерения отличается тем, что одновременно показывает результат для двух устройств заземления, включенных последовательно. Этим и объясняются требования к высокому качеству исполнения второго заземления, чтобы не учитывать его сопротивление.

Для выполнения вычислений также измеряется сопротивление заземляющей шины. Полученный результат вычитывают из результатов общих замеров.

Точность этого способа оставляет желать лучшего по сравнению с двумя вышеизложенными. Здесь существенную роль играет расстояние между заземляющим электродом, сопротивление которого измеряется и вторым заземлением. Стандартно такая методика не применяется. Это своего рода альтернатива, когда нельзя использовать другие способы измерений.

Как проверить заземление лампочкой

Можно проверить заземление и обычной лампочкой, используя для этих целей лампу накаливания на 40, 60 или 100 Вт. Для того, чтобы её подключить для проверки, потребуется взять стандартный патрон с цоколем E27 и кусок кабеля. Подключив провод к патрону, и вкрутив в него лампу, таким образом, получится собрать контрольную лампу для проверки заземления.

Как проверить заземление лампочкой

Чтобы проверить заземление в доме или квартире при помощи контрольной лампы, действовать нужно, точно так же, как и в случае с мультиметром. То есть, сначала разбираем розетку, а затем прикасаемся оголёнными концами проводов контрольной ламы, сначала к фазе и нулю, а затем к фазе и заземлению.

В первом случае, при наличии тока в электропроводке, лампа загорится ярким светом. Точно также она должна гореть, если один из проводов был перекинут на заземление, вместо нуля. Если при этом лампа горит намного хуже, чем при проверке «фаза-нуль», то это значит одно — заземление работает неудовлетворительно. Если лампочка вообще не горит при проверке заземления, значит, его нет.

Компенсационный метод

Относится к профессиональным методикам, отличается повышенной точностью и возможностью протоколирования результатов, при условии применения поверенных приборов для замера сопротивления изоляции заземления. Основывается на следующих операциях:

  • Для измерения используется высокоточное метрологическое оборудование.
  • Оба электрода забиваются в грунт по уже привычной схеме, на расстоянии от 20 метров и более от контрольной точки.
  • Расстояние между обоими электродами также составляет в пределах 20 метров.
  • Оба стержня забиваются строго в створе с контрольной точкой, образуя условную прямую линию.
  • Металлические вспомогательные элементы цепи сопрягаются между собой с помощью проводов и пружинных клемм.
  • Источник напряжения генерирует ток, который проходит по вновь собранному контуру, вне зависимости от работоспособности испытуемой сети.
  • В цепь включается временный трансформатор, на обеих обмотках которого продуцируется своё напряжение (U1 и U2) и сила тока (I1 и I2).
  • Второй трансформатор из комплекта метрологического оборудования, называется изолирующим. Ток перетекает на его обмотки, в результате чего происходит падение напряжения в сети.
  • Сила тока, при этом, на обоих устройствах, остаётся неизменной.
  • Сопротивление заземления отображается на специальном включённом в цепь реостате. В связи с тем, что не требуется применения теоретических выкладок по определению сопротивления из закона Ома, эмпирические показатели отличаются повышенной точностью.

Такой способ в полной мере отображает картину реального состояния электропроводки на объекте. По итогам проведения обследования, надзорный орган оформляет соответствующий протокол и выдаёт рекомендации техническим службам.

3-точечная система определения

Так, например, часто применяется методика 3-х точечной схемы, основанная на эффекте падения потенциала.
Трёхточечная схема для измерений
Графическая схема так называемой трёхточечной системы, которую достаточно часто применяют, когда требуется измерить значение сопротивления заземляющего контура

Измерения выполняют за три основных шага:

  1. Замер напряжения на электроде Э1 и зонде Э2.
  2. Замер силы тока на электроде Э1 и зонде Э3.
  3. Расчёт (формулой R = E / I) сопротивления заземляющего электрода.

Для этой методики точность замеров логически зависима от места инсталляции зонда Э3. Его рекомендуется внедрять в грунт на удалении – оптимально за пределы так называемой области ЭСЭ (эффективного сопротивления электродов) Э1 и Э2.

Инструкция измерения прибором С.А6415

Последовательность действий при работе с прибором серии С.А6415 доходчиво описывается в инструкции, прилагаемой к этому уникальному устройству.
Прибор С.А6415 для измерения сопротивления земли
Уникальный измерительный прибор – клещи, благодаря которому относительно просто и легко удаётся измерить сопротивление земляного контура в различных условиях

Например, есть необходимость провести измерения сопротивления заземления какого-либо электрического модуля (трансформатора, электросчётчика и т.п.).

Последовательность действий:

  1. Открыть доступ к заземляющей шине, сняв защитный кожух.
  2. Захватить клещами проводник (шину или непосредственно электрод) заземления.
  3. Выбрать режим измерения «А» (измерение тока).

Максимальное значение тока прибора составляет 30А, поэтому в случае превышения этой цифры выполнять измерение нельзя. Следует снять прибор и повторить попытку измерений в другой точке.
Работа с прибором С.А6415
Процесс выполнения замеров с помощью измерительных устройств типа С.А6415 и 3770. Результаты измерений фиксируются в таблице и сравниваются при следующем ТО

Когда полученная на шкале величина тока укладывается в допустимый диапазон, можно продолжить работу переключением прибора на измерение сопротивления «?».

Высвеченный на дисплее результат покажет общее значение сопротивления, включая:

  • электрод и шину заземления;
  • контакт нейтрали с электродом заземления;
  • контакт соединений на линии между нейтралью и заземляющим электродом.

Работая с клещами, следует иметь в виду: завышенные показания прибора по сопротивлению заземления, как правило, обусловлены плохим контактом заземляющего электрода с грунтом.

Также причиной высокого сопротивления может быть оборванная токоведущая шина. Высокие цифры сопротивлений в точках соединений (сращиваний) проводников тоже могут влиять на показания прибора.

Технология работы с устройством М-416

Если при зрительном осмотре на линии «земли» не выявлены поломки, узнавать состояние контура можно при помощи прибора М-416. Работы проводятся так:

  1. Проверяются источники питания. В приборе должно быть 3 батарейки по 1,5 В каждая.
  2. Устройство кладется горизонтально на плоскую поверхность.
  3. Выполняется калибровка. Переключатель диапазонов ставится в режим «Контроль 5Ω».
  4. Устанавливается стрелка на нулевое положение. Требуется нажать красную кнопку и прокрутить ручку реохорда. На шкале отображается 5±0,3 Ом.
  5. Измеритель располагают на минимальном расстоянии от заземлителя. Это поможет предотвратить влияние сопротивления соединительных проводов на общий результат.
  6. Проводится проверка по схеме под крышкой прибора. Основной и вспомогательный электроды понадобится забить в почву на глубину 50 см.
  7. Проводятся расчеты. При сопротивлении меньше 10 Ом итог нужно умножить на 1, а переключатель перевести на х1. Если итог замера более 10 Ом, переключатель переводится на х5, х20, х100.

Удалите слой краски с точки соединения проводов и заземлителя перед замерами.

Упрощенный двухточечный способ

Метод с низкой точностью, применяемый в стесненных условиях, например в городской застройке. Помимо электродов, задействуют вспомогательный заземлитель. Его соединяют с измеряемым последовательно.

Двухточечный способ

Прибор показывает резистивность обеих конструкций. Поэтому вспомогательный заземлитель должен иметь минимальное сопротивление, чтобы его можно было не учитывать.

Косвенные доказательства отсутствия РЕ

Существует несколько моментов, по которым можно судить об отсутствии РЕ. Владельцев квартиры и дома должны насторожить:

  • стабильные удары током от бойлера, стиральной, посудомоечной машинки, холодильника;
  • шумы колонок при воспроизведении музыки;
  • наличие большого количества пыли около старых батарей.

Немедленно вызовите специалистов – при серьезных замыканиях на линиях есть риски гибели от поражения током.

Инструкция измерения прибором С.А6415

Действуйте в таком порядке:

  1. Установите токоизмерительные клещи на шину или электрод заземления.
  2. Поверните переключатель до позиции «А» (измерения силы тока).
  3. Если на дисплее отображается значение более 30 А (максимально допустимое для данного прибора), снимите клещи и установите их в другом месте.
  4. Найдя участок с силой тока ниже 30 А, переключите прибор в режим измерения сопротивления (позиция «?»).

Тестирование стрелочным (цифровым) вольтметром

Проверка величины напряжения и его наличия осуществляется при помощи вольтметров переменного тока. Стрелочные приборы работают без источника питания, а цифровые функционируют в любом положении, не повреждаются при механическом воздействии.

Правильный алгоритм использования вольтметра:

  1. Определяется максимально допустимая величина замеров для прибора по самому большому числу на шкале.
  2. Уточнение единиц измерения устройства – микровольты, вольты, милливольты.
  3. Подключение вольтметра параллельно участку электрической сети и контроль полярности проводом.
  4. Прикручивание проводов стрелочного устройства к гайкам и винтам. У моделей с постоянным напряжением есть обозначения «плюс» и «минус».

При напряжении сети более 60 В работайте в диэлектрических перчатках, используйте щупы с изоляцией.

Измерение прибором С.А6415 (6410, 6412, 6415)

Этот прибор отличается от других 2 преимуществами:

  • отсутствием необходимости отключать заземляющее устройство;
  • оценкой сопротивления не только электрода, но и подводящей шины со всеми соединениями.

Измерение прибором

Прибор генерирует и подает на контур калиброванное напряжение, одновременно измеряя при помощи клещей силу протекающего в нем тока.

Проверка визуальным осмотром

Прежде всего, придется разобрать все розетки. У них должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода — коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

Такая схема исключительно опасна и при таком включении добавляется еще одна угроза. Достаточно поменять местами фазу и ноль на вводе в дом или квартиру (во время ремонтных работ всякое бывает), как все заземляющие клеммы в розетках окажутся под напряжением. Если вы обнаружите в розетках такое безобразие, немедленно его прекратите. В идеале внутренности розетки должны выглядеть так: подводятся три провода — фазный, нулевой и заземляющий.

Если с розетками все в порядке, загляните в этажный щиток. Ввод в вашу квартиру тоже должен иметь три провода, причем заземляющий должен быть надежно прикручен прямо к металлическому шасси щита или к шине, которая электрически соединена с ним. Если все так и есть, то можно считать, что визуальный осмотр закончен, поскольку все этажные щиты должны быть подключены к заземляющему домовому контуру.

Проверка косвенными измерениями

К сожалению, визуальный метод не может дать стопроцентной гарантии. Любая из нижеприведенных причин сведет все результаты осмотра на нет:

  1. «Щит должен быть заземлен» и «щит заземлен» — далеко не одно и то же. Среди профессиональных электриков тоже есть халтурщики.
  2. Вы можете просто ошибиться, приняв, к примеру, зануляющую шину в щите за заземляющую.
  3. Визуально все в порядке, но заземляющий домовой контур где-нибудь в подвале давно спилили и сдали в металлолом.
  4. Вы банально не смогли разобраться в мешанине щитовых проводов, особенно если оборудование старое, а «специалистов» по электрооборудованию в доме — в каждой квартире.

Поэтому придется на время стать электриком. На этом этапе проверки вам понадобятся указатель напряжения (отвертка-индикатор) и обычный вольтметр переменного тока с пределом измерения не ниже 500 В. Подойдет, к примеру, китайский тестер (мультиметр).

Напряжение в домовой электросети можно измерить обыкновенным тестером, выставленным на соответствующий предел измерения.

При помощи указателя найдите в розетке фазу и убедитесь, что на остальных клеммах, включая заземляющую, напряжения нет. Теперь нагрузите домашнюю электросеть, включив в любую из розеток потребитель мощностью 1—2 кВт. Измерьте напряжение между точками фаза — ноль и фаза — заземляющий контакт. Перед началом измерения не забудьте выставить на приборе необходимый предел! Напряжения должны немного (максимум до 10 В) отличаться друг от друга, поскольку нулевой провод является питающим и находится под нагрузкой, а заземляющий нет.

Если напряжения абсолютно равны, то, скорее всего, заземляющая клемма подключена к нулю либо где-то в квартирных распределительных коробках, либо в этажном щите. В любом случае придется выяснить, где и зачем это сделано. Если нулевой и заземляющий провода просто соединены между собой, то ничего страшного. Намного хуже, если заземляющий провод подключен к нулевой шине, а не к заземляющему контуру. В этом случае он лишь изображает заземляющий, но, по сути, является зануляющим. Конечно, эту проблему придется устранить.

Если разброс напряжения больше 10—15 В, то это означает, что сопротивление заземляющего контура слишком велико и его нужно считать неисправным.

Возможен и вариант, когда между фазой и заземляющей клеммой напряжения нет вообще. Это говорит о том, что провод заземления либо отсутствует (проверяется визуально), либо не подключен к контуру, либо оборван где-нибудь в стене или распределительной коробке.

Замер сопротивления заземлителя с применением токоизмерительных клещей

Для замера сопротивления заземления к метрологическому устройству подключаются 2 пары токоизмерительных клещей. Измерение производится на участке уцепи между упомянутыми ранее электродами. Клещи фиксируются на временном кабеле, подключённым между электродами и контрольной точкой.

Расстояние между клещами должно быть не менее 30 см. В грунт последовательно забиваются от 3 до 5 заземляющих потенциальных электродов, на каждом из которых определяется показатель сопротивления. При падении напряжения, по мере удаления от заземлителя, сопротивление заземления также снижается, в соответствии с законом Ома. Сила тока в цепи, при этом, остаётся неизменной.

Полученные показатели на различном удалении от точки контроля сравниваются с требованиями ПУЭ и заносятся в протокол.

Точные измерения по четырём точкам

Для большинства вариантов измерения сопротивлений наиболее оптимальным способом, помимо 2-х и 3-х точечных, считается 4-х точечная технология. Такой технологией замеров наделены приборы, подобные тестеру 4500 серии. Судя из наименования метода, на рабочей площадке в одну линию и на равных расстояниях размещаются четыре рабочих электрода.
Схема измерений по четырём точкам
По такой схеме – четырехточечной, производятся самые точные измерения. Используется современная аппаратура и есть возможность выполнять работы без отключения заземляющей цепи

Генератор тока прибора подключается на крайние электроды, в результате чего между ними течёт ток, значение которого известно. На других клеммах прибора подключены два внутренних рабочих электрода.

На этих клеммах присутствует значение падения напряжения. Конечный результат по замерам – сопротивление заземления (в Омах), значение которого прибор демонстрирует на дисплее.

Приборами из серии 4500 часто пользуются для измерения напряжения прикосновения. Устройством при помощи специального модуля генерируется в земле напряжение небольшой величины – имитация повреждения кабеля.

Одновременно на шкале прибора указывается ток, текущий по цепи заземления. Показания на экране берут за основу и умножают на предполагаемую величину тока в земле. Таким способом вычисляют напряжение прикосновения.
Выполнение мероприятий по контролю за состоянием электротехнической аппаратуры и линий заземления. Для работы используется измерительный прибор типа 4500

К примеру, максимальное значение ожидаемого тока на участке повреждения равно 4000А. На экране прибора отмечается величина 0,100. Тогда величина напряжения прикосновения будет равна 400В (4000*0,100).

Использование специализированных приборов

Как уже отмечалось, измерять сопротивление заземления простым тестером не представляется возможным (показать реально, сколько Ом составляет сопротивление заземлителя, он не способен). Это относится и к рассмотренной выше схеме с зондом и токовым электродом. Для работы с ними должны использоваться специальные аналоговые приборы следующих типов:

  • Ф4103-М1
  • ИСЗ-2016
  • М-416 (измеритель многофункциональный)
  • ИС-10 (микропроцессорный измеритель)
  • ИС-20/1 (более усовершенствованный прибор)
  • MRU-101 (профессиональный прибор

Для примера можно проследить, как измеряется сопротивление заземления посредством прибора М-416. При работе с ним необходимо действовать по следующему плану:

  1. Сначала следует убедиться в том, что в отсеке прибора имеются элементы питания (3 штуки по 1,5 Вольта, в сумме дающие питающее напряжение 4,5 Вольта).
  2. Затем приготовленный к работе прибор нужно расположить строго горизонтально и прокалибровать его.
  3. Для этого следует установить ручку с указателем в положение «контроль» и, надежно удерживая в нажатом положении кнопку красного цвета, выставить стрелочный указатель на «ноль».

Измерения сопротивления защитного заземления этим прибором осуществляются по той же схеме с двумя электродами.
Схема подключения прибора М-416
Схема подключения прибора М-416

После того, как колья вбиты в грунт – к ним подсоединяются провода согласно приведенной схеме (контакты прибора 1, 2, 3 и 4). Затем указатель приборного переключателя «Диапазон» устанавливается в «х1» (фото ниже).
Установка ручки прибора М-416 в положение х1
Установка ручки прибора М-416 в положение х1

Потом следует нажать на контрольную кнопку и поворачивать ручку «Реохорд» до того момента, пока стрелка на индикаторе не покажет «ноль». Указанную на шкале реохорда цифру нужно умножить на выбранный диапазон, что и даст в результате измеренное значение.

Обратите внимание: В ситуации, когда показания прибора превышают 10 Ом, переключатель множителя (диапазон) следует установить на более высокое значение: «X5», «X20» или «X100», а затем повторить все описанные ранее операции. Величина сопротивления в этом случае определяется путем умножения показания «Реохорд» на новый масштаб.

Для проведения измерений этим методом могут применяться и более «продвинутые» цифровые приборы, отличающиеся простотой измерений и максимальной точностью. С их помощью можно не только снимать показания, но и сохранять данные измерений во внутренней памяти.

При проведении проверок посредством мегаомметра действовать необходимо согласно инструкции (она похожа на описанные выше процедуры для М-416). Однако перед тем как проверить сопротивление заземления мегаомметром, следует знать, что погрешность снятия показаний в этом случае будет намного выше. Данный факт объясняется заметным отличием исследуемых систем от привычного сопротивления изоляции. Этот прибор больше подходит для проверки сопротивления изоляции электросетей заземляемого оборудования, надежность которой также влияет на безопасность его эксплуатации.

При нарушениях изоляции может наблюдаться неприятный эффект, который объясняется тем, что сопротивление тела человека является достаточно большим для появления на нем опасного потенциала. При случайном прикосновении к оголенному проводнику через тело потечет ток, величина которого достаточна для того, чтобы нанести ему серьезную травму.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

Особенности проверки в квартире и частном доме

Технология работ по тестированию заземления для дома и квартиры имеет несколько различий.

Тестирование в квартире

Заземлять необходимо все предметы из металла – радиаторы, ванну, бытовую технику. Также стоит защитить розетки и уточнить, входит ли третий контакт в схему. Существует несколько приемов.

Отвертка + тестер + изолированный провод

Используется провод с щупами на двух концах. Работают так:

  1. Проверяют напряжение в розетке при помощи тестера, настольной лампы, зарядки для смартфона. Вилку в розетку вставляют очень аккуратно.
  2. Рабочую розетку выключают через УЗО щитка, переключая автомат.
  3. С розетки снимают крышку и осматривают подключение контакта заземления. Он соединяется с отдельным кабелем или зануляется с клеммами.
  4. Проводят сборку розетки и включение УЗО.
  5. При наличии заземления делают проверку тестером или индикаторной отверткой. Контакт не должен накидываться на фазу.
  6. Проверяют заземление провода – находят фазу, убирают с нее палец и помещают на сенсор щуп. Он не должен гореть.

Об исправности «земли» свидетельствует загорание или повышенная яркость индикатора.

Тщательная проверка длинным проводом

Понадобятся индикаторная отвертка, тестер и длинный щуп. Алгоритм работ следующий:

  1. Открывают электрощит, индикаторной отверткой осматривают желто-зеленый провод на предмет отсутствия напряжения заземляющего контура.
  2. Находят «ноль» (синий провод) и присоединяют к нему щуп проводника. Другим щупом касаются желто-зеленого провода. По срабатыванию автомата можно судить об исправности провода.
  3. Возвращают рукоятку УЗО на взвод. Один конец провода остается на нуле, другим касаются всех розеток и металлических изделий в помещении. При исправном контуре автомат срабатывает.
  4. Проверяется ванная. На 50 см от пола расположен бокс СУП с металлической шиной и проводами. Здесь не должно быть напряжения.

После проверки напряжения в ванной нужно подтянуть соединения всех болтов.

Проверка в частном доме

Методика замеров для частного дома имеет существенные отличия от работ в квартире.

Тестирование исправности почвы и металлосвязей

Мероприятия подразумевают визуальный осмотр и применение специальных приборов:

  1. Для зрительного осмотра требуется ударить по контактам молотком с изолированной рукояткой. Проводник должен дребезжать.
  2. Проверка сопротивления металлических узлов омметром или мультиметром. Допустимый предел результата – 0,05 Ом.
  3. Вывод заземления на другом участке при различии измерений с нормативными.

Проверяйте грунт и металлосвязи летом или весной – в это время меньше осадков.

Проверка без тестера и вольтметра

Используя лампочку и патрон с двумя проводами, можно определить наличие заземления на даче:

  1. Зачистить концы провода от изоляции и вставить в розетку – лампочка загорится.
  2. Правильно измерить щупом заземление: достать один из проводов и прикоснуться к точке заземления. При отсутствии загорания лампы провод извлекают из другого отверстия.
  3. Если УЗО сработало – заземление качественное.
  4. Посмотреть на свечение лампы. При подключении фазы и земли оно ярче, чем при подсоединении фазы и нуля.

Используя индикаторы под евророзетки, можно обнаружить все недостатки подключения.

Нормы для каждого из типов

Целью проведения испытаний является определение численного значения сопротивления контура заземления с последующим сопоставлением с нормативами, прописанными в ПУЭ:

  • Около трансформатора значение для напряжения в 220 В должно быть не более 60 Ом, для 380 В – 30 Ом.
  • На отводящей кабельной жиле требуемое значение сопротивления снижается до 8 и 4 Ом, соответственно.
  • Если установка подключена с использованием глухозаземлённой нейтрали, то сопротивление на контуре должно быть не более 0,5 Ом.
  • Для воздушных кабельных линий с напряжением ниже 1000 В, предельный параметр составляет 30 Ом.

Таким образом, в зависимости от уровня ответственности и потенциальной опасности электроустановки, меняется показатель сопротивления заземляющего кабеля.

Формула расчета

Формула расчета сопротивления заземления одиночного вертикального заземлителя:

где:ρ — сопротивление грунта на единицу длины (Ом×м)L — протяженность заземлителя (в метрах)d — ширина заземлителя (в метрах)

T — расстояние от поверхности земли до середины заземлителя (в метрах)

Для электролитического заземления:

Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

где:

ρ — сопротивление грунта на единицу длины (Ом×м);L — протяженность заземлителя (в метрах);d — ширина заземлителя (в метрах);T — расстояние от поверхности земли до середины заземлителя (в метрах);

С — относительное содержание электролита в окружающем грунте.

Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

Ошибки при выполнении замеров

Наиболее часто встречающимися ошибками являются:

  • выбор для выполнения замеров на электроустановках точек не с максимальным воздействием коррозии, а в случайном порядке;
  • пренебрежение проверки заземления нейтралей при сильной коррозии;
  • размещение основного и дополнительного электродов слишком близко от заземляющего устройства при замерах методом амперметра и вольтметра.

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Измерение сопротивления8

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Как понять, что заземляющий контур не работает?

Не обязательно измерять напряжение мультиметром, чтобы выявить проблемы в работе заземляющего контура. Возникновение шума в колонках, разряды тока от стиральной машинки говорят о том, что электричество в землю не уходит. Если у вас дома установлены старые обогревательные батареи, то возле них будет скапливаться пыль в большом количестве.

Если у вас не получилось самостоятельно измерить напряжение заземляющего контура, то пригласите электрика. При небольших перепадах проблемы с работой этого электрического соединения незаметны, но, если возникнет серьёзное замыкание, человек, контактирующий с техникой, может погибнуть, т.к. ток попадёт в него.

Решение проблем с подключением

Если проверка контура заземления самодельной контролькой, вольтметром или мультиметром не дала результата, понадобится:

  • Включить в сеть электроприбор без касания к контакту и посмотреть, будет ли он работать.
  • Выключить питание в распредщитке, достать вилку из розетки.
  • Разобрать розетку и осмотреть провода, точки подключения контакта. Заземления нет, если отсутствует подсоединение.

Самостоятельные работы с электрической сетью при нарушении алгоритма могут стать причиной травм и пожаров в результате обрыва «нуля». Чтобы это предотвратить, воспользуйтесь услугами электриков.

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжением Для источников с трёхфазным напряжением Величина сопротивления заземления
127 В 220 В 8 Ом
220 В 380 В 4 Ом
380 В 660 В 2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Измерения лучше проводить с сухую солнечную погоду

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

Вопросы и ответы

Что такое сопротивление растекания контура заземления

По определению из учебника, цитируем: «Сопротивление заземления (сопротивление растеканию электрического тока) определяется как величина «противодействия» растеканию электрического тока в земле, поступающего в неё через заземлитель. Измеряется в Ом и должно иметь минимально низкое значение»

Представьте себе два штыря на расстоянии друг от друга. Один штырь – возле электроустановки, где произошло замыкание на «землю». Второй штырь расположен у ТП, куда стремится стекать ток. Наибольшая плотность тока в районе штыря, который расположен непосредственно возле электроустановки. Дальше ток разбегается по большой поверхности, но практически не выявляется. Площадь, расположенная на удалении от заземляющего устройства, где падение напряжения обнаружить не удается, называют зоной падения нулевого потенциала. До этой зоны расположены зоны растекания. Они требуют повышенного внимания при измерении. Ток, который стекает с заземляющего устройства создает между точкой входа в землю и зоной нулевого потенциала падение напряжения.

  Отношение падения напряжения к току, который его вызывает, есть сопротивления растекания. Rз=Uз/iз, Ом. Мы измеряем с помощью метода амперметр/вольтметр.

Как вы измеряете сопротивление заземления

Мы измеряем переходное сопротивление заземления с помощью метода амперметр/вольтметр.

Забиваем два электрода: токовый и потенциальный, через токовый электрод и ЗУ прогоняется ток. Потенциальный электрод измеряет падение напряжение между ЗУ и точкой, где находится токовый электрод. Прибор производит необходимые вычисления и выдает результат.

Расстояния между электродами выбираем согласно инструкции к прибору, которым производим измерения.

  В нашем случае устройство испытания, с которыми мы работаем – это может быть измеритель сопротивления заземления М416, либо другой имеющийся. В настоящее время мы чаще всего имеем дело с Metrel MI 3105, кстати, в комплект к Метрелу идут два провода каждый длинной по 20 м.

Нужно ли отключать измеряемые заземляющие устройства от общей цепи

Нет, мы не отключаем.

  Мы руководствуемся нормами ПУЭ-7 глава 1.7. Заземление и защитные меры. Нормы сопротивления для одинокого заземлителя одни, нормы для нейтрали трансформатора другие. Постараемся объяснить почему не рекомендуется отключать, для получения объективных результатов.

Когда мы измеряем отдельно стоящее заземляющее устройство связанное, например, с заземляющим устройством повторного заземления PEN (нулевого) проводника, который в свою очередь связан с повторными заземлителями на опорах ВЛ, если они есть и с ЗУ питающей подстанции. От ЗУ нейтрали трансформатора может быть присоединено большое количество других ЗУ. При измерении, ток от прибора идет не только в измеряемое ЗУ, но и в каждое связанное с PEN-проводником устройство. В этом случае общее сопротивление получается заниженным.

Однако для того, чтобы измерить определенное ЗУ, задайте себе вопрос, а можете вы отключить заземляющее устройство без погашения подстанции 6(10)-0,4 кВ. От нейтрали трансформатора подсоединяется все то, что выходит и из РУ, и с высокой стороны.

  Чтобы обезопасить себя, надо и с высокой стороны снять напряжение. Может произойти такое явление, как кз с высокой стороны, которое определит ли защита – большой вопрос. Даже если определит, то защита работает на сигнал не на отключение. Представьте себе, что напряжение с высокой стороны не снято, вы произвели измерение и отправились включать трансформатор, а в РУ образовался шаговый потенциал.

Сезонные коэффициенты, как они влияют на измерения, где их найти

  Коэффициенты измерения есть в старых правилах ПТЭЭП вместе с ПТБ при эксплуатации электроустановок потребителей. 1987 года издания. Сейчас изданы методические указания по расчету сопротивления заземления. Ведь никто не будет ждать протокол до лета, если контур заземления забит зимой.

  В ПТЭЭП – это «Учет сезонных изменений сопротивления заземлителей». Глава гласит: «Сопротивление зависит от величины удельного сопротивления земли в слое сезонных изменений». Для получения максимально возможного на протяжении года сопротивления заземлителя, измеренную в данный момент величину сопротивления заземлителя следует умножить на сезонный коэффициент заземлителя К.

«В зависимости от влажности земли в слое сезонных изменений принимают коэффициенты: К1– когда измерение производится при влажном грунте или моменту измерения предшествовало выпадение большого количества осадков.К2 – в случае измерения при средней влажности грунта и нормальном кол-ве осадков.К3 – при сухом грунте».

Зачем нужен протокол испытаний, какая от него практическая польза

Основная задача электрических испытаний – это выявление дефектов и предупреждение сбоев в работе электрооборудования, которые могут привести к нарушениям технологических процессов.

Благодаря ведомости дефектов, которая составляется по результатам испытаний и измерений характеристик электрооборудования, вы можете увидеть нарушения в эксплуатации электрооборудования. Особенно выделены неисправности, которые подлежат немедленному устранению.

  Протокол и технический отчет — это документация, обладающая юридической силой, способная предупредить штрафные санкции со стороны контролирующих организаций: МЧС, Ростехнадзора и других

Можно ли рассчитывать на снижение цены при повторных испытаниях

  При повторном обращении в нашу инженерную компанию действует система скидок, размер скидок уточняется у менеджера.

Почему такое возможно.

Технические отчеты мы храним в архиве компании в течение 10 лет. Если вы становитесь постоянным клиентом нашей компании, отчеты хранятся на протяжении всего сотрудничества, плюс еще 10 лет со дня последнего обращения.

При составлении технической отчетности и заключении выводов по состоянию оборудования наши специалисты проверяют, какие изменения произошли в электроустановке за межпроверочный период.

  Общее количество проверяемых устройств и кабелей при этом существенно не меняется. Однако в целом объем работ уменьшается. Отсюда и существенное снижение цены.

Полезные советы и общие рекомендации

Работы проводите летом, в устоявшуюся сухую погоду. В такие периоды сопротивление контура является максимальным.

Измерительный прибор аналогового типа держите строго горизонтально, чтобы исключить отклонение стрелки под собственным весом.

Перед работами не забудьте проверить уровень заряда в батарейках (аккумуляторах).

[spoiler title=»Источники»]

  • http://electry.ru/zazemlenie/izmerenie-soprotivleniya-zazemleniya.html
  • https://encom74.ru/kak-izmerit-soprotivlenia-zazemlausih-ustrojstv-proverka-kontura-zazemlenia/
  • https://StrouProkat40.ru/kommunikacii/kak-izmerit-soprotivlenie-zazemleniya-multimetrom.html
  • https://panelektro.ru/zazemleniya/kak-izmeryaetsya-soprotivlenie-zazemleniya.html
  • https://sovet-ingenera.com/elektrika/zemlya/izmerenie-soprotivleniya-zazemleniya.html
  • https://ik-gefest.ru/uslugi/elektrolaboratoriya/elektroizmereniya/izmerenie-soprotivleniya-zazemleniya/
  • https://FishkiElektrika.ru/kak-proizvesti-zamer-soprotivleniya-zazemleniya
  • https://volt-race.ru/nachinayushchim/kak-izmerit-zazemlenie.html
  • https://gir-svet.ru/kak-zamerit-soprotivlenie-zazemleniya-multimetrom/
  • https://dilmet-pro.ru/zazemlenie/kak-izmerit-zazemlenie-multimetrom.html
  • https://technadzor77.ru/polezno/elektrolaboratoriya/zamer-soprotivleniya-zazemleniya/
  • https://stroy-portall.com/inzhenernye-sistemy/mozhno-li-zamerit-soprotivlenie-zazemleniya-mul-timetrom-i-kak-eto-pravil-no-sdelat.html
  • https://zandz.com/ru/biblioteka/izmerenie-soprotivleniya-zazemleniya-klassicheskimi-metodami/
  • https://samastroyka.ru/kak-proverit-zazemlenie.html
  • https://pvsservice.ru/yelektrika/kak-izmerit-zazemlenie-multimetrom.html
  • https://bildsnab-yug.ru/seti-i-kommunikacii/kak-izmerit-zazemlenie-multimetrom.html
  • https://elektroservis43.ru/zazemlenie/izmerenie-soprotivleniya-zazemleniya-pribory
  • https://ProFazu.ru/provodka/bezopasnost-provodka/izmerenie-soprotivleniya-zazemleniya.html
  • https://StrojDvor.ru/elektrosnabzhenie/proverka-kontura-zazemleniya-v-rozetke-multimetrom/
  • https://YaElectrik.ru/elektroprovodka/kak-zamerit-soprotivlenie-zazemleniya-multimetrom

[/spoiler]