Как выполняется проверка и испытания автоматических выключателей – особенности и методики

Кратко об автоматах защиты

Автоматы защиты или автоматические выключатели – это электрические механизмы, основная задача которых при появлении нештатных или аварийных ситуаций обесточить проблемную линию или все помещение. Он отслеживает в режиме реального времени напряжение в электрической цепи.

Автоматические выключатели получили широкое распространение благодаря приемлемой цене, надежности и простоте использования, установки и обслуживания. Большое количество модификаций позволяет устанавливать устройство в электроустановки большой и малой мощности. Также выключатели бывают оснащены ручным и дистанционным управлением.

Отключающая способность

Её синонимы: номинальная наибольшая отключающая способность Icn, номинальная рабочая наибольшая отключающая способность Ics, номинальная предельная наибольшая отключающая способность Icu. Является основным параметром для выбора и замены автоматического выключателя.

Для бытового применения (ГОСТ Р 50345-99 (МЭК 60898)) автомат должен обладать номинальной наибольшей отключающей способностью Icn перекрывающую максимальный ток КЗ в данной цепи.

Для промышленного применения, имеющего доступ обученного персонала (ГОСТ Р 50030.2-99 (МЭК 60947.2), ГОСТ 9098-78, автомат должен обладать номинальной предельной наибольшей отключающей способностью Icu. перекрывающую максимальный ток КЗ в данной цепи. Автоматический выключатель работавший при токе равном Icu в соответствии с установленным циклом не обязан длительно проводить ток.

Категория применения

По ГОСТ Р 50030.2-99 (МЭК60947.2) выключатели с категорией А не предназначены, а с категорией В предназначены для обеспечения селективности при КЗ. Выключатели категории В имеют номинальный кратковременно выдерживаемый ток Icw, и время прохождения этого тока (обычно 0.25, 0.5 или 1с).

Если категория не оговаривается, имеется в виду категория А.

Токоограничение

Выключатель с токоограничением не позволяет току КЗ принять его максимальное значение и быстрее производит отключение. Класс токоограничения -2 ограничивает по времени КЗ в пределах ½ полу периода, класс -3 ограничивает КЗ в пределах 1/3 полу периода. Если автомат с токоограничением, но не указан класс, предоставляется интегральная характеристика I²t.

Выключатели изготавливаются со следующими дополнительными сборочными единицами (только те марки, для которых это предусмотрено):

  • свободными контактами (СК), (определяют положение автомата (вкл / выкл.);
  • вспомогательными контактами сигнализации автоматического отключения (ВСК), (сигнализируют срабатывание защиты автомата);
  • электромагнитным приводом (ЭП);
  • независимым расцепителем (НР), (обеспечивает отключение выключателя при подаче на катушку независимого расцепителя напряжения);
  • нулевым расцепителем (РНН), (обеспечивает отключение выключателя без выдержки времени при напряжении на выводах его катушки ниже 0.1-0.35 номинального (в зависимости от марки автомата) и препятствует включению выключателя при напряжениях на выводах катушки 0.1 номинального и ниже);
  • минимальным расцепителем (РМН), (обеспечивает отключение выключателя без выдержки времени при напряжении на выводах его катушки ниже 0.35-0.7 номинального (в зависимости от марки автомата) и препятствует включению выключателя при напряжениях на выводах катушки 0.35 номинального и ниже).
  • дополнительным кожухом (для увеличения степени защиты автомата от окружающей среды);
  • блокировкой положения «включено» и «отключено» замком.

По способу присоединения автоматы делятся на стационарные и выдвижные. Стационарные автоматы по способу монтажа могут быть как переднего присоединения, так и заднего. Переднее присоединение бывает как с креплением на din-рейке, так и с креплением винтами или болтами.

Буквенные характеристики расцепителей модульных выключателей

В — применяется для осветительных сетей. С — применяется для осветительных сетей с удаленным потребителем.

D — обеспечивают защиту установок с высокими значениями пусковых токов (двигатели, иногда лампы с пуско-ругулируещем устройством, трансформаторы).

Испытание расцепителей автоматических выключателей

Собирается схема проверок срабатывания расцепителей автоматических выключателей (АВ) согласно руководству по эксплуатации испытательного оборудования (нагрузочного устройства). Устанавливается испытательный ток соответствующий уставке тока данного типа расцепителей АВ.

Установившееся превышение температуры для контактов автомата при нагрузке всех полюсов номинальным током расцепителя и температуре окружающей среды 25 градусов С не должно превышать 80 градусов С. Электромагнитный расцепитель срабатывает без выдержки времени. Комбинированный расцепитель должен срабатывать с обратнозависимой от тока выдержкой времени при перегрузке и без выдержки времени при коротких замыканиях. Ток уставки расцепителей не регулируют.

В каждом полюсе автомата смонтирован свой тепловой элемент, воздействующий на общий расцепитель автомата. Чтобы убедиться в правильности действия всех тепловых элементов, необходимо проверить каждый из них в отдельности. При одновременной проверке большого количества, автоматов испытание тепловых элементов по начальному току срабатывания нецелесообразно, т.к. на проверку каждого автомата затрачивается несколько часов.

В связи с этим тепловые элементы рекомендуется проверять испытательным током, равным двух- и трехкратному номинальному току расцепителя при одновременной нагрузке испытательным током всех полюсов автоматов.

Если тепловой элемент не срабатывает, то автомат к эксплуатации не пригоден и дальнейшим испытаниям не подлежит. У всех тепловых элементов, должны быть проверены тепловые характеристики при одновременной нагрузке испытательным током всех полюсов автомата. Для этого все полюса автомата соединяют последовательно.

При проверке электромагнитных расцепителей, не имеющих тепловых элементов, автомат включают вручную, присоединяя к одному из полюсов нагрузочное устройство. Устанавливается такая величина испытательного тока, при которой автомат отключится.

После отключения автомата ток снижают до нуля и в указанном порядке проверяют электромагнитные элементы в остальных полюсах автомата.

Время срабатывания автомата определяется по шкале секундомера. Время — токовые характеристики срабатывания расцепителей автоматических выключателей должны соответствовать калибровкам и паспортным данным завода изготовителя. Проверка срабатывания электромагнитных и тепловых расцепителей АВ в объеме 30%, из них 15% наиболее удаленных от ВРУ квартир. При несрабатывании 10% проверяемых АВ, производится проверка срабатывания всех 100% АВ.

Виды автоматических выключателей

Самая узнаваемая для пользователей – бытовая серия модульных автоматических выключателей. Они устанавливаются на DIN-рейку и не имеют регулировок характеристик срабатывания. Все уставки расцепителей у модульной серии автоматических выключателей и дифференциальных автоматов отсчитываются от их номинального тока.

Ток отсечки зависит от буквенного обозначения, стоящего перед значением номинального тока.

Буквенное обозначение Кратность тока отсечки
В 2-5 от Iном
С 5-10 от Iном
D 10-20 от Iном

Это означает, что реальное значение тока, при котором сработает автомат, лежит в некотором диапазоне. Завод-изготовитель гарантирует, что это будет так.

Тепловые расцепители автоматов модульной серии начинают работу при превышении номинального тока. Время, по истечении которого произойдет отключение, зависит от кратности проходящего через автомат тока перегрузки к номинальному. У автоматических выключателей разных производителей время отключения отличается. Определить его можно по характеристикам, которые определяются по справочным данным на данную серию автоматов. Но и эта величина имеет разброс, поэтому характеристика отключения представляет собой не одну кривую линию, а их семейство, обозначаемое заштрихованной зоной. При определенном токе через автомат ожидаемое время срабатывания лежит в диапазоне, определяемое на границах этой зоны.

Время-токовые характеристики модульных выключателей
Время-токовые характеристики модульных выключателей

Читайте также:  Молниезащита для «умного» дома и не только

До сих пор в распределительных щитках встречаются автоматы, имеющие в своем составе либо только тепловую, либо максимальную защиту. Проверка этих устройств наиболее актуальна, так как их электромеханическая часть отслужила много лет, часть деталей заржавела и недееспособна.

Устаревшие модели выключателей

Следующий вид автоматических выключателей имеет нерегулируемую отсечку и регулируемую тепловую защиту. Для этого на его передней панели есть регулятор, с помощью которого номинальный ток теплового расцепителя изменяется в пределах 0,5 – 1,0 от номинального тока автомата. Такие автоматы применяются для защиты электродвигателей и точной настройки на ток защищаемой кабельной линии, обеспечения селективности защит от перегрузки. Регулятором выставляется ток, при котором начинается работа тепловой защиты. Положение регулятора отражается и на семействе характеристик выключателя.

Автомат с регулируемой тепловой защитой

Еще сложнее конструкция выключателя, имеющего кроме регулируемого теплового расцепителя еще и регулируемый электромагнитный. Есть модели, в которых регулировка осуществляется механически: изменением усилия пружины, противодействующей усилию, создаваемому катушкой отключения. Такие устройства встречаются у выключателей старого образца.

У современных автоматов регулировки выполняются при помощи встроенного блока защиты. Это комплекс, включающий в себя датчики тока, установленные на всех трех фазах выключателя, и полупроводниковое устройство, обрабатывающее полученные сигналы.

Состав защит, устанавливаемых в максимальной комплектации в такие автоматы:

  • максимально токовая отсечка с регулируемой независимой от тока выдержкой времени;
  • защита от перегрузки с регулируемым стартовым током и характеристикой срабатывания по времени;
  • защита от токов однофазного замыкания, с регулируемой уставкой и выдержкой по времени.

Необходимость эксплуатационной проверки

В нормативных документах нет четких указаний о сроках и периодичности производимых проверок, поэтому частота полностью зависит от человека, который отвечает за полную техническую безопасность жилплощади.

Электрики, полагаясь на свой опыт, рекомендуют время от времени проверять электрическое оборудование на пригодность. Обусловлено это тем, что каждый прибор с течением времени и изнашивается и может работать некорректно или вовсе не выполнять поставленные перед ним задачи.

Задавая определенную периодичность, лучше руководствоваться рекомендациями изготовителя устройства. Как правило, оборудование европейского производства нет необходимости проверять слишком часто. Если же автоматический выключатель был изготовлен в Китае или на одном из отечественных заводов, проверки лучше проводить как можно чаще. В любом случае у владельца есть право выбора.

При разработке алгоритмов проверки используется нормативный документ – ГОСТ 50345-2010: Автоматические выключатели бытового назначения для защиты от сверхтоков.

Условия проведения испытаний.

  • В части воздействия климатических факторов Комплект соответствует исполнению УХЛ, категория размещения 3.1 по ГОСТ 15150-69 и группе 2 по ГОСТ 22261-94.
  • В части воздействия механических факторов Комплект соответствует группе 2 по ГОСТ 22261-94.

Комплект не предназначен для установки и эксплуатации в пожароопасных и
взрывоопасных зонах по Правилам устройства электроустановок (ПУЭ).

По устойчивости при климатических воздействий Комплект должен удовлетворять
требованиям, установленным для приборов группы 2 ГОСТ 22261-94 с расширенным
диапазоном рабочих температур окружающей среды от минус 10°С до плюс 35°С,
относительной влажности воздуха 80% при температуре +25 °С и атмосферном давлении от 84до 106,7 кПа (630 -795 мм рт. ст.).

Требования к квалификации персонала.

К выполнению работ по испытанию автоматических выключателей и обработке их результатов, допускаются лица не моложе 18 лет, со специальным (электротехническим) образованием, обученные безопасным методам и приемам труда, технике безопасности, прошедшие медицинское освидетельствование, первичный инструктаж на рабочем месте в объеме инструкций по охране труда с отражением инструктажа е журнале, подписями инструктируемого и инструктирующего, изучившие данную Методику.

 Испытания должна проводить бригада в составе не менее трёх человек, в которой производитель работ должен иметь не ниже IV группы по электробезопасности, а члены бригады должны иметь не ниже III квалификационной группы по электробезопасности.

  • согласно ПОТЭЭ, при производстве работ по распоряжению, испытания с использованием стационарных испытательных установок, у которых токоведущие части закрыты сплошными или стационарными ограждениями, а двери снабжены блокировкой, допускается выполнять работнику, имеющему группу III, единолично в порядке текущей эксплуатации с использованием типовых методик испытаний.
  • знаний норм и правил работы в электроустановках.
  • лица, допустившие нарушения требований ПОТЭЭ, инструкции по охране труда, ПТЭЭП, а также исказившие показания и точность измерений, несут ответственность в соответствии с законодательством РФ

Требования к обеспечению безопасности при проведении измерений и испытаний и охрана окружающей среды.

При подготовке к испытаниям необходимо выполнить организационные и
технические мероприятия при работе в электроустановках в соответствии с Правилами охраны труда при эксплуатации электроустановок (ПОТЭЭ), требованиями ГОСТ 12.3.019-90 «Испытания и измерения электрические.
Общие требования безопасности», при проведении испытаний руководствоваться требованиями «Инструкции по охране труда при испытании автоматических выключателей».

  • Перед началом работы проверяется наличие напряжения на элементах, которые подвергаются испытаниям. Около открытых токоведущих частей ЭУ вывешиваются плакаты «СТОЙ! НАПРЯЖЕНИЕ!». При необходимости устанавливаются временные ограждения или барьеры. Соединительные провода, питающие прибор, должны иметь двойную изоляцию.
  • Подготовку объекта, комплекта РТ-2048-12 и сборку рабочей схемы следует выполнять при отсутствии на объекте напряжения и остаточного заряда.
  • Испытания необходимо производить так, чтобы объект испытаний находился в прямой видимости. Снимать знаки безопасности и разбирать ограждения следует только после снятия испытательной нагрузки и остаточного заряда.
  • При работе запрещается прикасаться к токоведущим частям, к которым подключен комплект.
  • В процессе эксплуатации комплекта следует неукоснительно соблюдать правила пожарной безопасности.
  • По окончании работ перед разборкой испытательной схемы снять напряжение и оста­точный заряд с проверяемого оборудования посредством его кратковременного заземления.

Выполнение испытаний во время грозы или при ее приближении запрещено.

При работе с комплектом необходимо строго соблюдать общие требования техники
безопасности, распространяющиеся на устройства РЗА энергосистем.

Подключение входных клемм устройства к токоведущим цепям должно
производиться после проверки отсутствия напряжения, через АВ с номинальным током
расцепителя не менее 100А.

  • Соединительные провода надо сначала подключить к устройству, а затем к токоведущим цепям.
  • На все время измерения входные клеммы устройства должны быть закрыты изоляционной крышкой.

Правила испытания автоматических выключателей

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Силовое электрооборудование подстанций, электрических сетей и электроустановок. Потребителя должно быть защищено от коротких замыканий и нарушений нормальных режимов автоматическими выключателями (далее автоматами).

1.2. Проверку и наладку автоматов должен осуществлять персонал электротехнической лаборатории (ЭТЛ).

2. ОБЪЕМ ИСПЫТАНИЙ АВТОМАТОВ

Проверка автоматических выключателей при вводе в эксплуатацию производится в следующем объеме.

1. Проверка соответствия технических характеристик выключателя проекту и требуемому режиму работы электроустановки.

Проверить, что заводские данные выключателя соответствуют, указанным в проекте.

Читать еще:  Выключатель автоматический трехполюсный 100а с s803c 25ка

Проверить, что возможный наибольший длительный рабочий ток нагрузки не превышает:

• номинального тока тепловых расцепителей выключателей с тепловыми расцепителями;

• номинального тока выключателя для выключателей только с электромагнитными расцепителями;

• наибольшего значения номинального рабочего тока полупроводникового расцепителя выключателей с полупроводниковыми расцепителями;

При отсутствии проектных данных выполнить расчет рабочих уставок защиты, проверить чувствительность и селективность защиты, а также отстройку защиты от возможных технологических перегрузок (пусковых токов, пиков технологической нагрузки, токов самозапуска двигателей, и т.п.).

2. Проверка качества монтажа, технического состояния выключателя, проверка работоспособности узлов механизма управления выключателя.

3. Измерение сопротивления изоляции выключателя. Сопротивление изоляции аппаратов до 1000В должно быть не менее 0,5 МОм. Измерение производится мегаомметром на 1000 В. (элементы с пониженным уровнем изоляции исключаются из схемы).

4. Проверка параметров срабатывания автоматических выключателей производится в следующем объеме:

4.1. Автоматические выключатели серий АП-50, АК-63, АЕ2000, А 3100, ВА, А3700.

• Проверка работоспособности тепловых расцепителей путем прогрузки током от постороннего источника питания (отключение выключателем тока определенной кратности и измерение времени отключения). Для регулируемого расцепителя проверка выполняется на рабочей уставке.

• Проверка работоспособности электромагнитнитных расцепителей.

• Проверка работоспособности независимого расцепителя и расцепителя минимального напряжения при использовании расцепителей в схемах РЗА.

4.2. Автоматические выключатели серий АВМ, ВА

• Проверка отсутствия затираний якорей максимальных расцепителей защиты от перегрузки, короткого замыкания и механического замедлителя расцепления для селективных выключателей нажатием якоря расцепителя.

• Калибровка рабочих уставок тока и времени срабатывания защиты с
обратнозависимой от тока характеристикой (защиты от перегрузки), тока времени срабатывания отсечки для селективных выключателей.

• Проверка работоспособности независимого расцепителя и расцепителя минимального напряжения при использовании расцепителей в схемах РЗА.

Принципиальная схема работы модульного автоматического выключателя

Электрический ток протекает с одной клеммы на катушку магнитного расцепителя, затем на систему контактов и через биметаллическую пластину на вторую клемму.

  • Электромагнитный расцепитель –  электромагнит моментального срабатывания для защиты от токов короткого замыкания. Время срабатывания — несколько миллисекунд.
  • Тепловой расцепитель – биметаллическая пластина, срабатывающая при возникновении токов перегрузки. Время срабатывания может достигать продолжительной величины до 2-ух часов.
  • Рычаг управления – элемент, с помощью которого можно осуществить включение-отключение автоматического выключателя
  • Механизм свободного расцепления – связывает рукоятку управления с подвижным контактом. Он же обеспечивает автоматическое отключение при перегрузке и КЗ.
  • Дугогасительная камера – эл. магнитная энергия выделяется в виде дугогасительной дуги

Устройства для проверки выключателей

Комплексы, используемые для проверки выключателей, специально разрабатываются для этой цели. Исключением являются устройства серии РЕТОМ, которые изначально предназначены для проверки релейной защиты, но могут использоваться и для подачи токов на контактную систему выключателя с контролем момента отключения.

Наиболее подходит для этой цели РЕТОМ-21. Проверка срабатывания теплового расцепителя выполняется подачей непрерывного тока одновременно с запуском секундомера прибора, настроенного на фиксацию исчезновения тока при отключении. Электромагнитные расцепители проверяются токами, подающимися импульсами длительности, устанавливаемой пользователем. При плавном подъеме тока неизбежно срабатывание защиты автомата от перегрузки.

Важное достоинство РЕТОМа – ток, подающийся для проверки – синусоидальный. Большинство других устройств, специально разработанных для проверки автоматов, выдает импульсный ток, формируемый тиристорными регуляторами. Но их габариты меньше, а управление – проще.

Таких устройств много. Ток для проверки отсечки они тоже подают увеличивающимися по амплитуде импульсами регулируемой длительности, а для проверки тепловой защиты выставляется требуемый ток и запускается секундомер.

Принцип проверки работоспособности УЗО

Когда материал проверяют на прочность, его пытаются поломать. Для испытания защитных автоматов, надо создать условия, при которых они сработают – по этим правилам и проводятся все существующие проверки.

Устройство защитного отключения срабатывает если обнаруживает утечку тока, т.е. когда в электрическую цепь по фазному проводу подается больше тока, чем из нее выходит по нулевому. Подключение УЗО может быть выполнено в домах с заземлением и без него – для проведения проверок надо понимать разницу между этими способами защиты бытовых приборов и человека.

  • В первом случае, если нарушается изоляция проводки, то часть тока уходит на корпус электроприбора, откуда он сразу же пойдет на провод заземления, вследствие чего и возникает утечка, которую устройство защитного отключения сразу же регистрирует и размыкает цепь.
  • Если заземления нет, то при повреждении изоляции ток опять же попадает на корпус электроприбора, но так как дальше уйти ему некуда, то в целом баланс между входом-выходом сохраняется и УЗО пока не срабатывает. Утечка обнаружится только в том случае, если человек прикоснется к неисправному электроприбору – через тело потечет ток, баланс между входящим и выходящим током в основной цепи нарушится и УЗО сразу же отключит питание.

Т.е. правильно подключенное и исправное устройство защитного отключения сработает в любом случае, но если сеть без заземления, то неисправность обнаружится только после того, как человека слегка пощекочет током (если прибор правильно подобран, то не должно возникнуть даже болезненных ощущений).

Разумеется, если заземления нет, то проверять работоспособность УЗО трогая фазный провод это, мягко говоря, очень экстремальный способ – если вдруг устройство неисправно, то ощутимый удар током неизбежен

Несмотря на разницу в способах подключения, принцип работы устройства защитного отключения остается неизменным и все методы проверки прибора пригодны в обоих случаях. При этом точно так же выполняется проверка установленного дифавтомата, ведь это то же УЗО, только совмещенное в одном корпусе с автоматическим выключателем.

Порядок проведения испытания.

4.1.  Общие рекомендации.

4.1.1.   Испытание производится имитацией протекания тока срабатывания расцепителей от нагрузочного комплекта, при этом должны быть выполнены 2 условия, без которых нарастания тока производиться не будет:

а)  должна быть обеспечена гарантированная цепь протекания тока через силовые

контакты испытуемого АВ;

б)  должна быть обеспечена гарантированная цепь через блокировочные контакты

(или

свободные силовые контакты) испытуемого АВ для концов встроенного секундомера комплекта.

При испытании однофазных АВ и отсутствии блок-контактов концы встроенного секундомера можно соединить «накоротко». В этом случае:

а)   измеряется время спадания тока при срабатывании расцепителя, а не время разрыва контактов;

б)   измеренное индикатором время при переключении тумблера «ТОК/СЕК» в памяти

не остается.

4.1.2.   Подключение комплекта к питающей сети производить кабелем сечением не менее 6-10 кв мм длиной не более 5-7 метров. В качестве вводного должен быть использован АВ типа АЕ или ВА с номинальным током расцепителя не менее 100А.

4.1.3.  Испытуемый АВ до подачи питающего напряжения должен находиться в отключенном состоянии.

4.1.4.  Набор тока рекомендуется начинать при питающем напряжении 220В. Если необходимого значения тока достичь не удается, следует подать на комплект питающее напряжение 380В.

4.1.5.  Комплект обеспечивает нарастание тока через испытуемый АВ «ступенями», при этом скорость нарастания тока зависит от величины питающего напряжения

первичной обмотки НТИ-10 — 220В или 380В, а также от подключения

испытуемого АВ на всю обмотку НТИ-10 (клеммы 1-3) или на ее половину

(клеммы 2-3).

4.1.6.  Независимо от конечного требуемого значения тока срабатывания расцепителя его набор следует начинать на пределе измерения 2кА.

4.1.7.    Значение приведенной погрешности измерения действующего значения

испытательного тока (не более 5%) равно отношению разности фактически измеренного и выставленного значений к пределу измерения (2кА или ЮкА). Так как комплект обеспечивает подачу на испытуемый АВ тока несинусоидальной формы, проверка правильности измерения эффективного (действующего) значения тока осуществляется только амперметром серии «Д».

Этапы проверки защитных автоматов согласно ГОСТ Р 50031-2012

Национальным стандартом ГОСТ Р 50031-2012 (Автоматические выключатели для электрооборудования) предписан следующий перечень типовых испытаний защитных автоматов:

  • проверка стойкости маркировки;
  • проверка надёжности резьбовых, безрезьбовых, паяных, быстросоединяемых выводов и токопроводящих соединений;
  • проверка надёжности выводов под внешние проводники;
  • тестирование защиты от поражения электрическим током;
  • измерение электроизоляционных свойств (влагостойкость, сопротивление, электрическая прочность изоляции главной и вспомогательной цепи);
  • тест на превышение температуры;
  • проверка работоспособности под нагрузкой номинальным током (28-суточный цикл);
  • проверка автоматов на отключающую способность;
  • контроль коммуникационной способности;
  • проверка устойчивости к току кз;
  • тестирование на устойчивость к механическим ударам;
  • испытание на термостойкость (работоспособность при высоких температурах внешней среды);
  • тестирование на устойчивость к аномальному нагреву и огню;
  • испытание на трекингостойкость (устойчивость к созданию токопроводящих каналов);
  • тест на коррозийную стойкость (способность аппарата сохранять работоспособность в агрессивной среде).

Приведённый выше список испытаний в полном объёме относится к новым, разработанным «с нуля» автоматическим выключателям, требующим сертификации. Число и стоимость предстоящих проверок определяется заранее и закладывается в цену продукции. 

Методика проверки тепловых расцепителей автоматических выключателей.

Порядок проверки время-токовых характеристик автоматических выключателей в соответствии с ГОСТ Р 50345-99 «Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения»

1. Условия испытаний

Выключатель устанавливают автономно, вертикально, на открытом воздухе при температуре 30+5 °С.

Выключатели присоединяют с помощью кабеля, соответствующего табл.1, и закрепляют на фанерном щите толщиной около 20мм.

In = Соединение осуществляют одножильными медными кабелями в поливинилхлоридной изоляции

2. Испытания выполняют однофазным током с последовательным соединением всех полюсов за исключением испытаний проверки мгновенного расцепления

3. Соединения размещают на открытом воздухе с промежутками не менее расстояния между выводами

Минимальная длина каждого соединения от вывода до вывода составляет:
1 м — при поперечных сечениях до 10мм 2 включительно,
2 м — при поперечных сечениях свыше 10мм 2 .

Крутящие моменты, прилагаемые для затягивания винтов в выводах, составляют

— для ВА 101 и ВА102

2. Проверка характеристики расцепления

Ток, равный 1,13 In (условный ток нерасцепления), пропускают в течении условного времени (см. табл. 2) через все полюса, начиная от холодного состояния.
Выключатель не должен расцепляться.
Условное время равно 1 ч для выключателей с номинальным током до 63 А включительно и 2 ч — с номинальным током свыше 63 А.
Затем ток постепенно повышают в течение 5 сек до 1,45 In (условный ток расцепления).
Выключатель должен расцепляться в пределах условного времени.

Ток, равный 2,55 In пропускают через все полюса, начиная с холодного состояния. Время размыкания должно составлять не менее 1 сек и не более:
60 сек — при номинальных токах до 32 А включительно
120 сек — при номинальных токах свыше 32 А.

Для выключателей типа В
Ток, равный 3 In, пропускают через все полюса, начиная с холодного состояния. Время размыкания должно составлять не менее 0,1 сек.
Ток, равный 5 In, пропускают через все полюса, снова начиная с холодного состояния. Выключатель должен расцепляться за время менее 0,1 сек.

Для выключателей типа С
Ток, равный 5 In, пропускают через все полюса, начиная с холодного состояния. Время размыкания должно составлять не менее 0,1 сек.
Ток, равный 10 In, пропускают через все полюса, снова начиная с холодного состояния. Выключатель должен расцепляться за время менее 0,1 сек.

Для выключателей типа D
Ток, равный 10 In, пропускают через все полюса, начиная с холодного состояния. Время размыкания должно составлять не менее 0,1 сек.
Ток, равный 50 In, пропускают через все полюса, снова начиная с холодного состояния. Выключатель должен расцепляться за время менее 0,1 сек.

Проверка влияния однополюсной нагрузки на характеристику расцепления многополюсных выключателей

Проверку осуществляют путём испытания выключателя, присоединённого согласно главы 1 «Условия испытаний».
Выключатель должен расцепляться в пределах условного времени при токе, равном:

Проверка влияния температуры окружающего воздуха на характеристику расцепления

Выключатель помещают в камеру с температурой окружающего воздуха
-5±2? С до достижения теплового равновесия.
Через все полюса в течение условного времени пропускают ток, равный 1,13 In (условный ток нерасцепления). Затем в течение 5 сек ток постепенно увеличивают до 1,9 In.
Выключатель должен расцепляться за условное время.

Выключатель помещают в камеру с температурой окружающего воздуха +40±2? С до достижения теплового равновесия.
Через все полюса пропускают ток, равный In.
Выключатель не должен расцепляться за условное время.

Методика прогрузки автоматических выключателей

Методику прогрузки автоматического выключателя я Вам покажу на примере автомата ВА47-29 с номинальным током 6 (А) и защитной характеристикой «С» российского производства IEK.

Этот автоматический выключатель имеет 2 защиты:

  • электромагнитную (мгновенную)
  • тепловую (с выдержкой времени)

Проверять будем и электромагнитную защиту, и тепловую. Для этого в паспорте на наш автоматический выключатель находим график время-токовой характеристики срабатывания.

Она выглядит следующим образом (более подробно о ней читайте в статье про время-токовые характеристики В, С и D — чем отличаются?):

Что же мы видим по графику?

А по графику мы видим абсолютно все характеристики срабатывания нашего испытуемого автомата. Ось Х — это кратность тока, т.е. отношение тока прогрузки к номинальному току. Ось У — это выдержка времени срабатывания автомата.

Зона срабатывания электромагнитной защиты для данного автоматического выключателя находится в диапазоне 5-10 кратности к номинальному току. Т.е. в нашем случае электромагнитная защита сработает при токе от 30-60 (А) за время не превышающее 0,01-0,02 (сек.).

Электромагнитную защиту будем проверять 8-кратным током 48 (А). При этом токе автомат должен отключиться за время не превышающее 0,01 (сек.) — смотрите желтую линию на графике.

Зона срабатывания тепловой защиты ограничена 2 кривыми, которые показывают разное температурное состояние автомата (горячее и холодное состояние).

Тепловую защиту будем проверять 3-кратным током 18 (А). При этом токе автомат должен отключиться за время от 3 — 80 (сек.) — смотрите красную линию на графике.

Если любая из вышеперечисленных защит не отключает автоматический выключатель согласно отведенному ей времени, то такой автоматический выключатель считается неисправным и к дальнейшей эксплуатации запрещен.

Требования для прогрузки автоматов

На основании требований нормативных актов ПУЭ и ПТЭЭП необходимо проводить контроль за исправностью автоматов. Это правило распространяется на все случаи электроизмерений, то есть необходимостью являются следующие обстоятельства:

  • если изделие только разработано и прошло сертификацию;
  • если установка только введена в эксплуатацию;
  • при проведении профилактических и плановых проверок;
  • после выполнения ремонтных работ: плановых, капитальных или аварийных.

Обратите внимание! Испытания выполняются подготовленным сотрудников, аттестация по электробезопасности у которого должна быть не ниже 3 группы. Для работ применяется специализированное оборудование.

В ходе проверки осуществляется погрузка импульсами тока, показатели, полученные по результатам испытаний, фиксируются. Доли миллисекунд лежат между определением пригодности автомата к дальнейшему использованию, поэтому самостоятельно принимать решение об эксплуатации прибора не допускается.


Проведенные проверки подтверждают фактическую исправность устройства, но не правильность выполненных регулировок.

Важно! Заключение, о том, что выключатель исправен, могут лишь дать только аккредитованные лаборатории.

Приборы для прогрузки автоматов

Параметры, характеризующие автомат — это:

  • период срабатывания при разных токах перегрузки либо токах короткого замыкания;
  • сработка при токах короткого замыкания.

Эти характеристики можно снять при наличии подручных средств.

Для проведения испытаний существует стенд, состоящий из:

  • источника для преобразования переменных токов;
  • аппаратуры для проведения замеров и контроля за параметрами;
  • соединительных элементов: колодок и кабелей;
  • диэлектрической столешницы или оборудования рабочего места;
  • для защиты работника диэлектрического коврика.

К сведению! Устройства для прогрузки автоматических выключателей делают переносными для удобства проведения испытаний.

Краткая периодичность в прогрузке автоматических выключателей

Испытания проводятся в соответствии с рекомендациями от производителя, но имеются сроки, жестко оговоренные нормативными актами. При эксплуатации в нормальном режиме и номинальном показателе тока периодичность составляет один раз в три года.

Важно! Если в процессе эксплуатации были аварийные сработки, то дополнительно проводится внеплановая проверка. Эти рекомендации распространяются на все приборы независимо от того, где они установлены: на производстве или в быту.

На основании действующих регламентов прогрузка на секционных или вводных аппаратах, осветительных сетях или охранных сигнализациях составляет 2 %. Для иных установок этот показатель 1 %.

Если автоматы не соответствуют характеристикам производителя, то необходима проверка всей партии. После проведения работ на каждый прибор проставляется печать, где указана лаборатория, проводившая испытания. Это показатель, свидетельствующий о пригодности устройства к эксплуатации.

Оборудование для проверки автоматов на отключающую способность

Чтобы проверить дифавтомат на работоспособность, предварительно требуется собрать простую схему, в состав которой входит следующее оборудование:

  • трансформатор тока – ТТ;
  • соединительные провода;
  • амперметр, выполняющий роль шунта;
  • ключ управления – КУ;
  • лабораторный автотрансформатор для наблюдения за изменениями нагрузки – ЛАТР или нагрузочный трансформатор – НТ.

Проверка дифавтомата требует частичного демонтажа устройства, а после проверки обратной установки.

Измерение характеристик отключения


Таблица время-токовых характеристик

Целью данного этапа проверки является определение фактических рабочих уставок прибора и их соответствие время токовым характеристикам, оговоренным в заводской документации прибора.

Тестируемыми характеристиками в данном случае являются:

  • номинальный рабочий ток;
  • время отключения;
  • ток и время мгновенного действия (проверка электромагнитного расцепителя);

Обратите внимание, что в некоторых моделях автоматов время отключения увеличено, что необходимо для создания эффекта селективности при построении последовательных цепей защиты.

Согласно стандарту, этот этап тестирования также должен сопровождаться проверкой стабильности параметров защиты при изменении температуры окружающей среды. Но в эксплуатационную технологию испытаний электроустановок до 1000 в данный пункт, как правило, включает только при наличии соответствующих производственных условий.

Контроль коммутационной способности

Чтобы подтвердить работоспособность автоматического выключателя необходимо не только проверить его детекторы перегрузок, но и выполнить тест на отключающую способность под штатной и критической нагрузкой.

Данный тест заключается в многократном выполнении цикла «включение-отключение» с последующей проверкой переходного сопротивления контактов.

Устойчивость к токам короткого замыкания

Поскольку номинальный рабочий ток автоматического выключателя значительно меньше тока короткого замыкания, данный этап электроизмерительных испытаний предназначен для подтверждения работоспособности прибора после пропускания через его полюса токов короткого замыкания.

Испытание считается успешным, если коммутационный механизм сохранил свою работоспособность, и переходное сопротивление контактов осталось в пределах нормы.

Проверка автомата защиты на подлинность

Любой известный бренд пользуется повышенным спросом, из-за чего на рынке попадаются электротовары-подделки, среди которых немало автоматических выключателей. Эти двойники, вероятней всего, не прошли положенный цикл испытаний и, следовательно, несут потенциальную угрозу для потребителя. В частности, подделку автомата АВВ можно определить по следующим признакам:

  1. Качество пластика. У подделки пластик обычно гладкий, глянцевый и пружинистый на ощупь (экономия на материале). У оригинала пластик шершавый, матовый, прочный.
  2. Штрих-код. На настоящий автомат он наносится методом лазерной печати, на подделку – обычной краской, которая слезает при царапании ногтем или монеткой.
  3. Маркировка. При внимательном рассмотрении можно заметить, что логотип и текст на фальшивке отличается от оригинала. Кроме того, на корпусе подлинного изделия чётко просматривается схема подключения, маркировка Ростеста или знак Таможенного союза.

Существуют и другие идентификаторы, такие как RFID-метка и состояние упаковки. Однако они мало что значат: метка вполне может присутствовать и на подделке, а упаковка оригинала может быть повреждена в процессе транспортировки. Но если русский текст на коробочке содержит орфографические ошибки – это верный признак «левой» продукции. 

Алгоритм измерения силы тока мультиметром

Универсальные тестеры с питанием от батареек помогут быстро и точно определить нужные параметры цепи. Порядок стандартных действий:

  • выставляется нужный режим;
  • щупы подключаются к разъемам на измерительном приборе;
  • мультиметр встраивается в цепь;
  • после подключения источника питания снимаются показания.

Главное условие — обязательно должна присутствовать нагрузка, которая собственно и определяет значение силы тока. Это могут быть любые электроприборы с сопротивлением больше 0.

Какой мультиметр предпочтительнее использовать

В том случае, когда такого прибора в доме нет, и собственник только собирается его приобрести, нужно знать о важных особенностях выбора. Для домашних нужд достаточно будет приобрести бюджетную модель, обладающую звуковой индикацией прозвонки.

На панели такого прибора имеется обозначение диода либо звука. При испытании этим измерителем на целостность линии, когда контакт будет замкнут, раздастся звук.

Строго говоря, такая функция не обязательна для прозвонки проводов мультиметром, но она очень удобная и помогает более качественно выполнять тестирование. О том, что электроцепь имеет разрыв, также говорит «1» на табло. Это означает, что сопротивление между измерительными щупами существенно больше, чем допустимый предел. При отсутствии повреждений, на дисплее показание будет находиться около «0».

Важно! Сопротивление провода «0» — идеальное состояние и может быть реализовано только в домашних сетях и то не очень длинных.

Выбор режима

На корпусе мультиметра расположен переключатель, который нужно перевести в сектор для измерения силы тока. Постоянный ток можно исследовать практически на всех мультиметрах. На шкале для него есть обозначения — А с прямой чертой и 3 пунктирами под ней, DCA и/или значок 10А. Профессиональными приборами можно измерять силу тока до 20 А.

Если параметры тока неизвестны, рекомендуется устанавливать переключатель на максимальный диапазон. Так вы убережете прибор от короткого замыкания и порчи. Затем, когда порядок величины будет установлен, ручку можно повернуть в другую позицию для получения более точных данных.

В некоторых моделях не предусмотрено измерение переменного тока. Но покупать другой мультиметр совсем необязательно. В этом случае можно использовать различные приспособления, например, готовые или самодельные резисторы. Их сопротивлением должно соответствовать 1 Ом. Тогда согласно закону Ома I=U/R снимаемое напряжение численно будет равно силе тока на данном участке цепи.

Также используется метод с выпрямлением диодным мостом. На вход подается переменный ток, а на выходе он постоянный. Затем можно проводить измерения своим мультиметром.

Подключение щупов

Щупы, прилагаемые к мультиметру, изготовлены в разных цветах — черный «минусовый» и красный для нагрузки. Они вставляются в гнезда на корпусе:

  • черный в СОМ;
  • красный в VΩmA или 10А.

Рекомендуется устанавливать проводники в разъемы с заведомо большим диапазоном, то есть сразу в 10 А. Особенно это важно, если верхний предел величины точно не известен. Измеряемый ток будет сначала определяться грубо, а при необходимости переключатель можно перевести в более тонкий регистр.

Измерение

Мультиметр для определения силы тока всегда подключается в цепь последовательно с нагрузкой или в разрыв. В качестве источника питания можно использовать бытовую электросеть или блок питания. По правилам электробезопасности сначала необходимо собрать всю систему, а затем подключить электричество.

Если на дисплее мультиметра высветились нули, значит, произошел обрыв и проводимость отсутствует. Иногда это показывает, что предел измерений установлен высоковато. В последнем случае нужно отключить питание и перенастроить мультиметр в соответствии с ожидаемой величиной, то есть переставить в другой разъем красный щуп и выставить более низкий предел измерений.

Если не сработали автоматы защиты

В этом случае проверяют все электрооборудование и устройства, которые подпитываются от данной линии.

Например, если перестало работать освещение в комнате или на стене 2 розетки одновременно не работают, то проверяют поочередно следующее узлы:

  1. Отключают питание в щитке на домовую сеть полностью.
  2. До того, как проверить сопротивление, уточняют работоспособен ли мультиметр. Это выполняется закорачиванием щупов. На дисплее должен отразится «0». Если показания несколько отличаются, например, 0.1, это будет свидетельствовать о том, что прибор имеет погрешность.
  3. Проверяют исправность лампочки, выкрутив ее из патрона. Одним щупом касаются патрона, а другим торцевой части. Зуммер и показания измерителя, отличные от «0» и «1», говорят что прибор рабочий.
  4. Проверяют настенный выключатель, демонтируя панель, снимая винты и вынимая из коробки. Если видимых нарушений нет, то проверяют тестером выключатель, устанавливая щупы на его контакты. Отсутствие зуммера говорит о том, что выключатель неисправен и его нужно заменить. Как правило, после этого свет в комнате появляется.

Если сработали автоматы защиты

Этот вариант говорит о том, что в электросетях дома произошел серьезный сбой, возможно, даже короткое замыкание. Скорее всего, вышла со строя проводка, которую можно проверить прозвонкой.

Для этого владелец должен последовательно выполнить следующие этапы:

  1. Посредством отвёртки отсоединяют провод. Обычно, он расположен снизу и отводят его в сторону. «0» провод данной группы располагается, обычно, на 0-зажиме под защитным автоматом.
  2. Перед тем как найти неисправность, вынимают лампочку из патрона и далее мультиметром проверяют линию освещения, подключая 1-й щуп к «0», а 2-й к отсоединенному проводу. При появлении звукового сигнала – провод закороченный.
  3. Вверху комнаты находят и открывают щиток, отсоединяют провода.
  4. Проверяют каждую пару на наличие в них КЗ.
  5. После определения дефектного участка с КЗ, вновь испытывают измерителем цепи на вводном щитке. Если появится звук из пищалки, то ремонт должен быть выполнен на проводе от щита до коробки. Если нет, то продолжают по аналогичной методике обследовать другие провода.

Как проверить исправность автоматического выключателя при покупке без контрольных приборов

  • Посмотрите нанесение маркировки на корпус автомата. Она должна быть явно заводской и четко различимой;
  • Проверьте правильность маркировки: название фирмы производителя должно быть написано латинскими буквами и точно соответствовать (по буквенно) логотипу производителя;

Например, маркировка автоматов фирмы ИЭК ранее наносилось русскими буквами. Такое обозначение устарело. С 2006 года автоматы этого производителя маркируются IEK. Отсюда вывод. Видим при покупке на автомате ИЭК, а не IEK, значит автомат старой партии. Или вместо ABB видим ABBB явная подделка.

  • Проверьте автомат на вес. Поддельные автоматы легче «родных»;
  • Взведите автомат рукой и после отключите его. При отключении должен быть характерный щелчок.

Хочется отметить, что чаще всего я читал о подделке автоматов защиты ИЭК (IEK). Поэтому приведу отличительные признаки настоящего автомата защиты ИЭК.

Сколько автоматических выключателей требуется проверить?

Даже на среднем объекте автоматических выключателей может быть сотни, поэтому проверить все может быть достаточно проблематично. К тому же это вызовет дополнительные траты.

Согласно ПУЭ (ПУЭ, п. 1.8.37, пп. 3) проверять необходимо определенную часть от всех выключателей. В жилых, административных, общественных, бытовых зданиях, спортивных сооружениях, клубных учреждениях, на зрелищных мероприятий проверять должно не менее 2%автоматических выключателей распределительного типа и групповых сетей, а также вводные, пожарной сигнализации, автоматического пожаротушения, цепи аварийного освещения, секционные выключатели. В прочих электрических установках возможно снижение количества проверяемых автоматов распределительного типа и групповых сетей до 1%. В остальном — правила те же.

Заказчик сам может решать, где проводить испытания — в лабораторных условиях или непосредственно на объекте. В последнем случае присутствие специалистов лаборатории на объекте может быть достаточно длительным, но это вполне выполнимо, если вы обратитесь в нашу лабораторию. Наши специалисты проведут на объекте столько времени, сколько потребуется.

Если объект еще не эксплуатируется, то проверка в лаборатории будет значительно проще и удобней. Но если объект введен в эксплуатацию, то потребуется замена проверяемых автоматов резервными. В этом случае заказчику потребуется заранее подготовить их а необходимом количестве. Резервные выключатели будут установлены на место проверяемых, чтобы электроустановка продолжала работать во время выполнения испытаний.

Если же заказчик не считает целесообразным приобретать большое количество резервного оборудования, то проводить испытание придется в нерабочие часы — вечером и ночью, а также в выходные дни. В этом случае потребителю не придется испытывать неудобства от отключения сети.

Заказчики могут выбрать вариант проведения испытаний, которые предложат наши специалисты. Окончательное решение всегда остается за ответственным лицом: инженером по технической безопасности или владельцем.

Лабораторная проверка и проверка автоматов защиты по месту

Точная проверка работоспособности автоматического выключателя возможна только в лаборатории на стандартном тестовом оборудовании. Называется такая проверка – прогрузка.

В лаборатории можно точно проверить автомат защиты по трем основным характеристикам:

  • Номинальному току работы;
  • Току, при котором срабатывает защита;
  • Времени защитного срабатывания при перегрузке (уставка теплового расцепителя) и коротком замыкании (уставка электромагнитного расцепителя).

Лабораторная (точная) проверка автоматических выключателей делается перед их монтажом, в специализированных лабораториях и стоит денег.

По понятным причинам, лабораторная проверка автоматического выключателя делается в исключительных случаях и уж точно не подходит для проверки выключателя при покупке.

Проверка срабатывания УЗО лампой-контролькой

В этом случае напрямую создается утечка тока из цепи, которую защищает УЗО. Для правильного проведения проверки здесь надо понимать, есть в цепи заземление или устройство защитного отключения подключено без него.

Самодельная лампочка-контролька

Чтобы собрать контрольку понадобятся сама лампочка, патрон для нее и два провода. По сути, собирается лампа-переноска, но вместо вилки остаются оголенные провода, которыми можно касаться проверяемых контактов.

Нюансы сборки контрольки

При сборке контрольки надо учитывать два важных нюанса:

  • Во-первых – лампа должна быть достаточно мощной, чтобы создать необходимый ток утечки. Если проверяется стандартное УЗО с уставкой 30 мА, то здесь проблем нет – даже лампочка на 10 Ватт будет брать из сети ток как минимум в 45 мА (высчитывается по формуле I=P/U => 10/220=0,045).

Внимание на этот пункт надо обращать в том случае, когда уставка устройства защитного отключения порядка 100 мА – тогда надо брать лампочку мощностью минимум 25 Ватт.

  • Во-вторых – если взять слишком мощную лампочку. Если вопрос только в том, как проверить УЗО на срабатывание, то на этот момент можно не обращать внимания. Если же дополнительно надо оценить не раскалибровалась ли величина уставки, то придется дополнять схему. К примеру, если собрать контрольку с лампочкой на 100 Ватт, то сила тока на ней будет порядка 450 мА. При этом неизвестно, при каком токе сработало устройство защитного отключения – если оно все-таки раскалибровалось и срабатывает вместо 30 на токе в 100 мА, то человек может получить смертельный удар электричеством. Чтобы проверить УЗО на срабатывание при номинальном токе, к контрольке надо добавить сопротивление, которое уменьшит силу тока в цепи до необходимой.

Важно. Сопротивление самой лампочки при этом обязательно надо высчитывать, а не измерять мультиметром, так как сопротивление холодной вольфрамовой нити примерно в 10-12 раз меньше, чем у горячей.

Расчет сопротивления контрольки

Высчитать нужное сопротивление поможет закон Ома – R=U/I. Если взять лампочку мощностью 100 Ватт для проверки устройства защитного отключения с уставкой 30 мА, то порядок расчетов следующий:

  • Измеряется напряжение в сети (для расчетов взят номинал в 220 Вольт, но на практике плюс-минус 10 вольт могут сыграть роль).
  • Общее сопротивление цепи при напряжении 220 Вольт и токе в 30 мА будет 220/0,03≈7333 Ом.
  • При мощности 100 Ватт на лампочке (в сети 220 вольт) будет сила тока 450 мА, значит ее сопротивление 220/0,45≈488 Ом.
  • Чтобы получить ток утечки ровно в 30 мА, к лампочке надо последовательно подключить резистор сопротивлением 7333-488≈6845 Ом.

Если брать лампочки другой мощности, то и резисторы будут нужны другие. Также обязательно надо учитывать мощность, на которую рассчитано сопротивление – если лампочка 100 Ватт, то и резистор должен быть соответствующий – либо 1 мощностью 100 Ватт, либо 2 по 50 (но во втором варианте резисторы подключаются параллельно и их общее сопротивление высчитывается по формуле Rобщ=(R1*R2)/(R1+R2)).

Для гарантии, после сборки контрольки можно включить ее в сеть через амперметр и убедиться, что через цепь с лампочкой и резистором проходит ток требуемой силы.

Испытание УЗО в сети с заземлением

Если проводка проложена по всем правилам – с использованием заземления, то здесь можно проверить каждую розетку отдельно. Для этого индикатором напряжения находится к какой клемме розетки подведена фаза, и в нее вставляется один из щупов контрольки. Вторым щупом надо коснуться контакта заземления и устройство защитного отключения должно сработать, так как ток из фазы ушел на заземление и не вернулся через ноль.

Если вдруг УЗО не сработало, то надо помнить, что это не обязательно вина прибора – еще может быть неисправна линия заземления.

В таком случае требуются дополнительные проверки и если испытание заземления это отдельная тема, то проверка УЗО может быть выполнена напрямую следующим способом.

Испытание УЗО в однофазной сети без заземления

К правильно подключенному устройству защитного отключения провода от распределительного щитка приходят на верхние клеммы, а к защищаемым устройствам отходят с нижних.

Чтобы устройство решило, что произошла утечка, надо одним щупом контрольки коснуться нижней клеммы, с которой из УЗО уходит фаза, а другим щупом коснуться верхней нулевой клеммы (на которую приходит ноль из распределительного щитка). В таком случае, по аналогии проверки батарейкой, ток пойдет только через одну обмотку и УЗО должно решить, что происходит утечка и разомкнуть контакты. Если этого не происходит, значит устройство неисправно.

Результаты проверки автоматических выключателей

Результаты проведения испытательных работ заносятся в специальный протокол. В документе фиксируется срабатывание или несрабатывание автомата, время срабатывания и ток в момент срабатывания.

Выключатель должен быть исключен из сети и заменен аналогичным в следующих случаях:

  • при токе несрабатывания происходит расцепление;
  • при токе срабатывания расцепление не происходит;
  • автомат срабатывает, но этот момент не вписывает в допустимый интервал времени срабатывания.

Если в ходе испытаний был выявлен хотя бы один выключатель, который подлежит замене, то по требованиям ПУЭ необходимо дополнительно проверить такое же количество приборов, которое было отправлено на первичную проверку.

Чаще всего выявление неисправных выключателей происходит при эксплуатационных испытаниях. Если проверка осуществляется в рамках передачи объекта в эксплуатацию, то вероятность обнаружения неисправности значительно ниже. Использование надежного оборудования и строгое соблюдение регламента испытаний позволяет нам выявить дефектные выключатели с высокой точностью. Это позволяет максимально защитить электросеть, объект и людей, которые проживают на нем, работают или посещают его. И хотя замена выключателя может быть достаточно затратной, повышение безопасности этого стоит.

Случается, что из-за короткого замыкания происходит поломка другого оборудования сети: вентиляционного или промышленного. В результате затраты становятся еще больше, поэтому вклад средств в испытания и замену выявленных неисправных автоматов можно рассматривать как экономию в долгосрочной перспективе.

Сроки испытаний

С какой частотой должны проводиться проверки, написано в сопроводительных нормативно-правовых документах, но рекомендуемая периодичность – один раз в три года при соблюдении всех правил эксплуатации. При некорректной работе или регулярных аварийных срабатываниях периодичность должна изменяться, проводится внеплановая проверка. Данная рекомендация относится ко всем бытовым автоматическим выключателям.

Часто из-за короткого замыкания наблюдается поломка других рабочих элементов электрической цепи, например, вентиляционной системы. Это приводит к большим финансовым растратам. Чтобы предотвратить подобные ситуации и в долгосрочной перспективе сэкономить, рекомендуется регулярно подвергать испытаниям автоматические выключатели и в случае выявления проблемы заменять их новыми. Чтобы убедиться, что автоматические выключатели выполняют свою защитную функцию, требуется на дисплее установить определенную периодичность, с которой будут проводиться испытания на пригодность.

Периодичность проверки автоматических выключателей

Нормативная документация не регламентирует периодичность проверки автоматических выключателей в процессе эксплуатации. Этот вопрос относится к компетенции руководителя, отвечающего за техническую безопасность объекта. Необходимость проверок диктуется тем, что со временем устройство может утратить свои защитные функции и не сработать в критической ситуации.

Обычно для определения периодичности проверок опираются на предписания производителя изделия. Если таковых нет, то при нормальных условиях эксплуатации проверку рекомендуется делать 1 раз в 3 года.

Практика показывает: продукция признанных мировых брендов не требует частых проверок, в то время как проверка автоматов сомнительного происхождения никогда не будет лишней.   

Техника безопасности при проведении измерений и испытаний

Выполнение измерительных и испытательных работ на автоматических выключателях оформляют соответствующим документом (нарядом, заданием и т.п.). Перед началом работ проводят организационно-технические мероприятия, указанные в Межотраслевых правилах по охране труда при эксплуатации электроустановок (ПОТ РМ-016-2001). Измерения и испытания должна выполнять бригада, состоящая как минимум их 2-х специалистов, имеющих квалификационную группу не ниже III.

Подключение входных клемм испытываемых приборов к токопроводящей цепи выполняют при отсутствии напряжения. Если манипуляции проводятся под напряжением до 1000 В, необходимо оградить токоведущие элементы от случайного прикосновения, а в процессе работы пользоваться диэлектрическими галошами, перчатками и изолированным инструментом.